|
import os, sys |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
parentdir = os.path.dirname(currentdir) |
|
sys.path.append(parentdir) |
|
|
|
import argparse |
|
from configparser import ConfigParser |
|
from datetime import datetime |
|
|
|
import ddmr.utils.constants as C |
|
|
|
TRAIN_DATASET = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/training' |
|
|
|
err = list() |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--ini', help='Configuration file') |
|
args = parser.parse_args() |
|
|
|
configFile = ConfigParser() |
|
configFile.read(args.ini) |
|
print('Loaded configuration file: ' + args.ini) |
|
print({section: dict(configFile[section]) for section in configFile.sections()}) |
|
print('\n\n') |
|
|
|
trainConfig = configFile['TRAIN'] |
|
lossesConfig = configFile['LOSSES'] |
|
datasetConfig = configFile['DATASETS'] |
|
othersConfig = configFile['OTHERS'] |
|
augmentationConfig = configFile['AUGMENTATION'] |
|
|
|
simil = lossesConfig['similarity'].split(',') |
|
segm = lossesConfig['segmentation'].split(',') |
|
if trainConfig['name'].lower() == 'uw': |
|
from Brain_study.Train_UncertaintyWeighted import launch_train |
|
loss_config = {'simil': simil, 'segm': segm} |
|
elif trainConfig['name'].lower() == 'segguided': |
|
from Brain_study.Train_SegmentationGuided import launch_train |
|
loss_config = {'simil': simil[0], 'segm': segm[0]} |
|
else: |
|
from Brain_study.Train_Baseline import launch_train |
|
loss_config = {'simil': simil[0]} |
|
|
|
output_folder = os.path.join(othersConfig['outputFolder'], |
|
'{}_Lsim_{}__Lseg_{}'.format(trainConfig['name'], '_'.join(simil), '_'.join(segm))) |
|
output_folder = output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y") |
|
|
|
print('TRAIN ' + datasetConfig['train']) |
|
|
|
if augmentationConfig: |
|
C.GAMMA_AUGMENTATION = augmentationConfig['gamma'].lower() == 'true' |
|
C.BRIGHTNESS_AUGMENTATION = augmentationConfig['brightness'].lower() == 'true' |
|
|
|
try: |
|
unet = [int(x) for x in trainConfig['unet'].split(',')] |
|
except KeyError as e: |
|
unet = [16, 32, 64, 128, 256] |
|
|
|
try: |
|
head = [int(x) for x in trainConfig['head'].split(',')] |
|
except KeyError as e: |
|
head = [16, 16] |
|
|
|
try: |
|
resume_checkpoint = trainConfig['resumeCheckpoint'] |
|
except KeyError as e: |
|
resume_checkpoint = None |
|
|
|
launch_train(dataset_folder=datasetConfig['train'], |
|
validation_folder=datasetConfig['validation'], |
|
output_folder=output_folder, |
|
gpu_num=eval(trainConfig['gpu']), |
|
lr=eval(trainConfig['learningRate']), |
|
rw=eval(trainConfig['regularizationWeight']), |
|
acc_gradients=eval(trainConfig['accumulativeGradients']), |
|
batch_size=eval(trainConfig['batchSize']), |
|
max_epochs=eval(trainConfig['epochs']), |
|
image_size=eval(trainConfig['imageSize']), |
|
early_stop_patience=eval(trainConfig['earlyStopPatience']), |
|
unet=unet, |
|
head=head, |
|
resume=resume_checkpoint, |
|
**loss_config) |
|
|