andreped's picture
Renamed module to ddmr
a27d55f
import os
import argparse
import re
import warnings
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, to_rgba, CSS4_COLORS
import tikzplotlib
from ddmr.utils.misc import segmentation_ohe_to_cardinal
# segm_cm = np.asarray([to_rgba(CSS4_COLORS[c], 1) for c in CSS4_COLORS.keys()])
# # segm_cm.sort()
# segm_cm = segm_cm[np.linspace(0, len(segm_cm), 4, endpoint=False).astype(int), ...]
segm_cm = cm.get_cmap('jet').reversed()
segm_cm = segm_cm(np.linspace(0, 1, 30))
segm_cm[0, :] = np.asarray([0, 0, 0, 0])
segm_cm = ListedColormap(segm_cm)
DICT_MODEL_NAMES = {'BASELINE': 'BL',
'SEGGUIDED': 'SG',
'UW': 'UW'}
DICT_METRICS_NAMES = {'NCC': 'N',
'SSIM': 'S',
'DICE': 'D',
'DICE_MACRO': 'D',
'HD': 'H', }
def get_model_name(in_path: str):
model = re.search('((UW|SEGGUIDED|BASELINE).*)_\d+-\d+', in_path)
if model:
model = model.group(1).rstrip('_')
model = model.replace('_Lsim', '')
model = model.replace('_Lseg', '')
model = model.replace('_L', '')
model = model.replace('_', ' ')
model = model.upper()
elements = model.split()
model = elements[0]
metrics = list()
model = DICT_MODEL_NAMES[model]
for m in elements[1:]:
if m != 'MACRO':
metrics.append(DICT_METRICS_NAMES[m])
return '{}-{}'.format(model, ''.join(metrics))
else:
try:
model = re.search('(SyNCC|SyN)', in_path).group(1)
except AttributeError:
raise ValueError('Unknown folder name/model: '+ in_path)
return model
def load_segmentation(file_path) -> np.ndarray:
segm = np.asarray(nib.load(file_path).dataobj)
if segm.shape[-1] > 1:
segm = segmentation_ohe_to_cardinal(segm)
return segm
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None)
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd())
parser.add_argument('--overwrite', type=bool, default=True)
parser.add_argument('--fileno', type=int, default=2)
parser.add_argument('--tikz', type=bool, default=False)
args = parser.parse_args()
assert args.dir is not None, "No directories provided. Stopping"
os.makedirs(args.output, exist_ok=True)
list_fix_img = list()
list_mov_img = list()
list_fix_seg = list()
list_mov_seg = list()
list_pred_img = list()
list_pred_seg = list()
print('Fetching data...')
init_lvl = args.dir.count(os.sep)
for r, d, f in os.walk(args.dir):
current_lvl = r.count(os.sep) - init_lvl
if current_lvl < 3:
for name in f:
if re.search('^{:03d}'.format(args.fileno), name) and name.endswith('nii.gz'):
if re.search('fix_img', name) and name.endswith('nii.gz'):
list_fix_img.append(os.path.join(r, name))
elif re.search('mov_img', name):
list_mov_img.append(os.path.join(r, name))
elif re.search('fix_seg', name):
list_fix_seg.append(os.path.join(r, name))
elif re.search('mov_seg', name):
list_mov_seg.append(os.path.join(r, name))
elif re.search('pred_img', name):
list_pred_img.append(os.path.join(r, name))
elif re.search('pred_seg', name):
list_pred_seg.append(os.path.join(r, name))
# Figure: all coronal views
# Fix img | Mov img
# BASELINE 1 | BASELINE 2 | SEGGUIDED
# UW 1 | UW 2 | UW 3
list_fix_img.sort()
list_fix_seg.sort()
list_mov_img.sort()
list_mov_seg.sort()
list_pred_img.sort()
list_pred_seg.sort()
print('Making Test_data.png...')
selected_slice = 64
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[selected_slice, ..., 0].T
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[selected_slice, ..., 0].T
fix_seg = load_segmentation(list_fix_seg[0])[selected_slice, ..., 0].T
mov_seg = load_segmentation(list_mov_seg[0])[selected_slice, ..., 0].T
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200)
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)],
[('Fixed image', 'Fixed segms.'), ('Moving image', 'Moving segms.')])):
ax[i].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[1], origin='lower', cmap=segm_cm, alpha=0.6)
ax[i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i+2].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i].set_xlabel(title[0], fontsize=16)
ax[i+2].set_xlabel(title[1], fontsize=16)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Test_data.png')):
warnings.warn('File Test_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png')
if args.tikz:
tikzplotlib.save(os.path.join(args.output, 'Test_data.tex'))
plt.close()
print('Making Pred_data.png...')
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img), figsize=(9, 3), dpi=200)
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
model = get_model_name(pred_img_path)
ax[1, i].set_xlabel(model, fontsize=9)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png')
if args.tikz:
tikzplotlib.save(os.path.join(args.output, 'Pred_data.tex'))
plt.close()
print('Making Pred_data_large.png...')
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img) + 2, figsize=(9, 3), dpi=200)
list_pred_img = [list_mov_img[0]] + list_pred_img
list_pred_img = [list_fix_img[0]] + list_pred_img
list_pred_seg = [list_mov_seg[0]] + list_pred_seg
list_pred_seg = [list_fix_seg[0]] + list_pred_seg
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
if i > 1:
model = get_model_name(pred_img_path)
elif i == 0:
model = 'Moving image'
else:
model = 'Fixed image'
ax[1, i].set_xlabel(model, fontsize=7)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data_large.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png')
if args.tikz:
tikzplotlib.save(os.path.join(args.output, 'Pred_data_large.png'))
plt.close()
print('...done!')