|
import os |
|
import requests |
|
from datetime import datetime |
|
from email.utils import parsedate_to_datetime, formatdate |
|
from DeepDeformationMapRegistration.utils.constants import ANATOMIES, MODEL_TYPES, ENCODER_FILTERS, DECODER_FILTERS, IMG_SHAPE |
|
import voxelmorph as vxm |
|
from DeepDeformationMapRegistration.utils.logger import LOGGER |
|
|
|
|
|
|
|
def download(url, destination_file): |
|
headers = {} |
|
|
|
if os.path.exists(destination_file): |
|
mtime = os.path.getmtime(destination_file) |
|
headers["if-modified-since"] = formatdate(mtime, usegmt=True) |
|
|
|
response = requests.get(url, headers=headers, stream=True) |
|
response.raise_for_status() |
|
|
|
if response.status_code == requests.codes.not_modified: |
|
return |
|
|
|
if response.status_code == requests.codes.ok: |
|
with open(destination_file, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=1048576): |
|
f.write(chunk) |
|
|
|
last_modified = response.headers.get("last-modified") |
|
if last_modified: |
|
new_mtime = parsedate_to_datetime(last_modified).timestamp() |
|
os.utime(destination_file, times=(datetime.now().timestamp(), new_mtime)) |
|
|
|
|
|
def get_models_path(anatomy: str, model_type: str, output_root_dir: str): |
|
assert anatomy in ANATOMIES.keys(), 'Invalid anatomy' |
|
assert model_type in MODEL_TYPES.keys(), 'Invalid model type' |
|
anatomy = ANATOMIES[anatomy] |
|
model_type = MODEL_TYPES[model_type] |
|
url = 'https://github.com/jpdefrutos/DDMR/releases/download/trained_models_v0/' + anatomy + '_' + model_type + '.h5' |
|
file_path = os.path.join(output_root_dir, 'models', anatomy, model_type + '.h5') |
|
if not os.path.exists(file_path): |
|
LOGGER.info(f'Model not found. Downloading from {url}... ') |
|
os.makedirs(os.path.split(file_path)[0], exist_ok=True) |
|
download(url, file_path) |
|
LOGGER.info(f'... downloaded model. Stored in {file_path}') |
|
else: |
|
LOGGER.info(f'Found model: {file_path}') |
|
return file_path |
|
|
|
|
|
def load_model(weights_file_path: str, trainable: bool = False, return_registration_model: bool=True): |
|
assert os.path.exists(weights_file_path), f'File {weights_file_path} not found' |
|
assert weights_file_path.endswith('h5'), 'Invalid file extension. Expected .h5' |
|
|
|
ret_val = vxm.networks.VxmDense(inshape=IMG_SHAPE[:-1], |
|
nb_unet_features=[ENCODER_FILTERS, DECODER_FILTERS], |
|
int_steps=0) |
|
ret_val.load_weights(weights_file_path, by_name=True) |
|
ret_val.trainable = trainable |
|
|
|
if return_registration_model: |
|
ret_val = (ret_val, ret_val.get_registration_model()) |
|
|
|
return ret_val |
|
|