Spaces:
Running
Running
import nibabel as nib | |
import numpy as np | |
from nibabel.processing import resample_to_output | |
from skimage.measure import marching_cubes | |
def load_ct_to_numpy(data_path): | |
if type(data_path) != str: | |
data_path = data_path.name | |
image = nib.load(data_path) | |
data = image.get_fdata() | |
data = np.rot90(data, k=1, axes=(0, 1)) | |
data[data < -1024] = 1024 | |
data[data > 1024] = 1024 | |
data = data - np.amin(data) | |
data = data / np.amax(data) * 255 | |
data = data.astype("uint8") | |
print(data.shape) | |
return [data[..., i] for i in range(data.shape[-1])] | |
def load_pred_volume_to_numpy(data_path): | |
if type(data_path) != str: | |
data_path = data_path.name | |
image = nib.load(data_path) | |
data = image.get_fdata() | |
data = np.rot90(data, k=1, axes=(0, 1)) | |
data[data > 0] = 1 | |
data = data.astype("uint8") | |
print(data.shape) | |
return [data[..., i] for i in range(data.shape[-1])] | |
def nifti_to_glb(path, output="prediction.obj"): | |
# load NIFTI into numpy array | |
image = nib.load(path) | |
resampled = resample_to_output(image, [1, 1, 1], order=1) | |
data = resampled.get_fdata().astype("uint8") | |
# extract surface | |
verts, faces, normals, values = marching_cubes(data, 0) | |
faces += 1 | |
with open(output, "w") as thefile: | |
for item in verts: | |
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2])) | |
for item in normals: | |
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2])) | |
for item in faces: | |
thefile.write( | |
"f {0}//{0} {1}//{1} {2}//{2}\n".format( | |
item[0], item[1], item[2] | |
) | |
) | |