Spaces:
Running
Running
import configparser | |
import logging | |
import os | |
import shutil | |
import traceback | |
def run_model( | |
input_path: str, | |
model_path: str, | |
verbose: str = "info", | |
task: str = "CT_Airways", | |
name: str = "Airways", | |
): | |
logging.basicConfig() | |
logging.getLogger().setLevel(logging.WARNING) | |
if verbose == "debug": | |
logging.getLogger().setLevel(logging.DEBUG) | |
elif verbose == "info": | |
logging.getLogger().setLevel(logging.INFO) | |
elif verbose == "error": | |
logging.getLogger().setLevel(logging.ERROR) | |
else: | |
raise ValueError("Unsupported verbose value provided:", verbose) | |
# delete patient/result folder if they exist | |
if os.path.exists("./patient/"): | |
shutil.rmtree("./patient/") | |
if os.path.exists("./result/"): | |
shutil.rmtree("./result/") | |
patient_directory = "" | |
output_path = "" | |
try: | |
# setup temporary patient directory | |
filename = input_path.split("/")[-1] | |
splits = filename.split(".") | |
extension = ".".join(splits[1:]) | |
patient_directory = "./patient/" | |
os.makedirs(patient_directory + "T0/", exist_ok=True) | |
shutil.copy( | |
input_path, | |
patient_directory + "T0/" + splits[0] + "-t1gd." + extension, | |
) | |
# define output directory to save results | |
output_path = "./result/prediction-" + splits[0] + "/" | |
os.makedirs(output_path, exist_ok=True) | |
# Setting up the configuration file | |
rads_config = configparser.ConfigParser() | |
rads_config.add_section("Default") | |
rads_config.set("Default", "task", "mediastinum_diagnosis") | |
rads_config.set("Default", "caller", "") | |
rads_config.add_section("System") | |
rads_config.set("System", "gpu_id", "-1") | |
rads_config.set("System", "input_folder", patient_directory) | |
rads_config.set("System", "output_folder", output_path) | |
rads_config.set("System", "model_folder", model_path) | |
rads_config.set( | |
"System", | |
"pipeline_filename", | |
os.path.join(model_path, task, "pipeline.json"), | |
) | |
rads_config.add_section("Runtime") | |
rads_config.set( | |
"Runtime", "reconstruction_method", "thresholding" | |
) # thresholding, probabilities | |
rads_config.set("Runtime", "reconstruction_order", "resample_first") | |
rads_config.set("Runtime", "use_preprocessed_data", "False") | |
with open("rads_config.ini", "w") as f: | |
rads_config.write(f) | |
# finally, run inference | |
from raidionicsrads.compute import run_rads | |
run_rads(config_filename="rads_config.ini") | |
# rename and move final result | |
os.rename( | |
"./result/prediction-" | |
+ splits[0] | |
+ "/T0/" | |
+ splits[0] | |
+ "-t1gd_annotation-" | |
+ name | |
+ ".nii.gz", | |
"./prediction.nii.gz", | |
) | |
# Clean-up | |
if os.path.exists(patient_directory): | |
shutil.rmtree(patient_directory) | |
if os.path.exists(output_path): | |
shutil.rmtree(output_path) | |
except Exception: | |
print(traceback.format_exc()) | |
# Clean-up | |
if os.path.exists(patient_directory): | |
shutil.rmtree(patient_directory) | |
if os.path.exists(output_path): | |
shutil.rmtree(output_path) | |