andreasmlanger commited on
Commit
7de1996
1 Parent(s): 733c4ae

initial commit

Browse files
Files changed (7) hide show
  1. app.py +47 -0
  2. cat_dog_RNN.pth +3 -0
  3. examples/01.jpg +0 -0
  4. examples/02.jpg +0 -0
  5. examples/03.jpg +0 -0
  6. examples/04.jpg +0 -0
  7. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Simple Gradio app on http://127.0.0.1:7860
3
+ Hugging Face: https://huggingface.co/spaces/andreasmlanger/cat_dog
4
+ """
5
+
6
+ import gradio as gr
7
+ import torch
8
+ from torch import nn
9
+ from torchvision import models, transforms
10
+ import os
11
+
12
+
13
+ MODEL_PATH = r'cat_dog_RNN.pth' # path to trained model, needs to be in same directory
14
+ EXAMPLES = [[os.path.join('examples', f)] for f in os.listdir('examples')] # example images
15
+ CLASS_NAMES = ['cat', 'dog']
16
+
17
+ # Load model architecture and saved weights
18
+ model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
19
+ for param in model.parameters():
20
+ param.requires_grad = False # freeze pre-trained weights, so they don't get changed during training
21
+ model.fc = nn.Sequential(
22
+ nn.Linear(in_features=model.fc.in_features, out_features=512),
23
+ nn.ReLU(),
24
+ nn.Dropout(0.2),
25
+ nn.Linear(512, len(CLASS_NAMES), bias=True)
26
+ )
27
+ model.load_state_dict(torch.load(MODEL_PATH))
28
+
29
+
30
+ def predict(img):
31
+ transform = transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()])
32
+ transformed_image = transform(img).unsqueeze(0)
33
+ model.eval()
34
+ with torch.inference_mode():
35
+ pred_probs = torch.softmax(model(transformed_image), dim=1)
36
+ return {CLASS_NAMES[i]: float(pred_probs[0][i]) for i in range(len(CLASS_NAMES))}
37
+
38
+
39
+ # Create and launch the Gradio demo
40
+ demo = gr.Interface(fn=predict,
41
+ inputs=gr.Image(type='pil', label='Image'),
42
+ outputs=[gr.Label(num_top_classes=2, label='Predictions')],
43
+ examples=EXAMPLES,
44
+ title='Cat vs Dog Image Classifier',
45
+ description='A residual neuronal network designed to distinguish between cat and dog images.')
46
+
47
+ demo.launch(debug=False)
cat_dog_RNN.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2fe3ae139b6b5ad651d6de59f8a8e3b88de786a9fd638bcfc8356b65bb397b
3
+ size 98549674
examples/01.jpg ADDED
examples/02.jpg ADDED
examples/03.jpg ADDED
examples/04.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==4.16.0
2
+ torch==2.1.2
3
+ torchvision==0.16.2