andreaschandra commited on
Commit
235b994
·
1 Parent(s): e559136

update scripts

Browse files
Files changed (2) hide show
  1. README.md +4 -3
  2. app.py → app_hotdog.py +11 -4
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- title: Smarter NPC
3
  emoji: 🤖
4
  colorFrom: pink
5
  colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.9.1
8
- license: mit
9
- pinned: false
10
  short_description: Code base for learning huggingface spaces
 
11
  ---
12
 
13
  # learn-hf-spaces
 
1
  ---
2
+ title: HF Spaces
3
  emoji: 🤖
4
  colorFrom: pink
5
  colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.9.1
8
+ suggested_hardware: cpu-basic
9
+ app_file: app_hotdog.py
10
  short_description: Code base for learning huggingface spaces
11
+ pinned: false
12
  ---
13
 
14
  # learn-hf-spaces
app.py → app_hotdog.py RENAMED
@@ -3,16 +3,23 @@ from transformers import pipeline
3
 
4
  pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
 
6
  def predict(input_img):
7
  predictions = pipeline(input_img)
8
- return input_img, {p["label"]: p["score"] for p in predictions}
 
9
 
10
  gradio_app = gr.Interface(
11
  predict,
12
- inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
13
- outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
 
 
 
 
 
14
  title="Hot Dog? Or Not?",
15
  )
16
 
17
  if __name__ == "__main__":
18
- gradio_app.launch()
 
3
 
4
  pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
6
+
7
  def predict(input_img):
8
  predictions = pipeline(input_img)
9
+ return input_img, {p["label"]: p["score"] for p in predictions}
10
+
11
 
12
  gradio_app = gr.Interface(
13
  predict,
14
+ inputs=gr.Image(
15
+ label="Select hot dog candidate", sources=["upload", "webcam"], type="pil"
16
+ ),
17
+ outputs=[
18
+ gr.Image(label="Processed Image"),
19
+ gr.Label(label="Result", num_top_classes=2),
20
+ ],
21
  title="Hot Dog? Or Not?",
22
  )
23
 
24
  if __name__ == "__main__":
25
+ gradio_app.launch()