Spaces:
Sleeping
Sleeping
# import dependencies | |
import os | |
import requests | |
from operator import itemgetter | |
import chainlit as cl | |
from llama_parse import LlamaParse | |
from llama_parse.utils import ResultType | |
from llama_index.core import SimpleDirectoryReader | |
from langchain.text_splitter import ( | |
RecursiveCharacterTextSplitter, | |
MarkdownHeaderTextSplitter, | |
) | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain_community.vectorstores import Qdrant | |
from langchain_community.document_loaders import DirectoryLoader | |
from langchain_openai import ChatOpenAI | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.output_parsers import StrOutputParser | |
from qdrant_client import QdrantClient | |
# load keys and variables | |
from dotenv import load_dotenv | |
load_dotenv() | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv("LLAMA_CLOUD_API_KEY") | |
QDRANT_URL = os.getenv("QDRANT_URL") | |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY") | |
# pdf url | |
URL = "https://d18rn0p25nwr6d.cloudfront.net/CIK-0001326801/c7318154-f6ae-4866-89fa-f0c589f2ee3d.pdf" | |
# parse instructions | |
PARSING_INSTRUCTION = """The provided document is an annual report filed by Meta Platforms, Inc. with the Securities and Exchange Commission (SEC). | |
This form provides detailed financial information about the company's performance for a specific year. | |
It includes financial statements, management discussion and analysis, and other relevant disclosures required by the SEC. | |
It contains many tables and some signature pages. | |
Replace the signatures with tables containing the headers for each element. | |
""" | |
# rag prompt | |
RAG_PROMPT = """ | |
CONTEXT: | |
{context} | |
QUERY: | |
{question} | |
The provided context is an annual report filed by Meta Platforms, Inc. with the Securities and Exchange Commission (SEC). | |
This form provides detailed financial information about the company's performance for a specific year. | |
It includes financial statements, management discussion and analysis, and other relevant disclosures required by the SEC. | |
It contains many tables and some signature pages. All members of the board need to sign the document. | |
Answer the query above only using the context provided. If you don't know the answer, simply say 'I don't know'. | |
""" | |
def create_new_vectorstore(collection_name, embeddings) -> Qdrant: | |
data_file = "./data/output.md" | |
# Check if the file exists | |
if os.path.exists(data_file): | |
print("The 10-K form has been parsed already. Using the cached version.") | |
else: | |
print("Cache is empty. Parsing will begin.") | |
parse_10K_file() | |
# load the document | |
loader = DirectoryLoader(path="data/", glob="**/*.md", show_progress=True) | |
documents = loader.load() | |
# split the document into chunks | |
# split markdown headers | |
headers_to_split_on = [ | |
("#", "Header 1"), | |
("##", "Header 2"), | |
("###", "Header 3"), | |
] | |
md_text_splitter = MarkdownHeaderTextSplitter( | |
headers_to_split_on=headers_to_split_on, strip_headers=False | |
) | |
md_splits = md_text_splitter.split_text(documents[0].page_content) | |
# recursive character text splitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100) | |
docs = text_splitter.split_documents(md_splits) | |
# create the vectorstore | |
qdrant_vector_store = Qdrant.from_documents( | |
documents=docs, | |
embedding=embeddings, | |
url=QDRANT_URL, | |
api_key=QDRANT_API_KEY, | |
collection_name=collection_name, | |
) | |
return qdrant_vector_store | |
def get_vectorstore(client, collection_name, embeddings) -> Qdrant: | |
try: | |
vector_store = Qdrant( | |
client=client, | |
collection_name=collection_name, | |
embeddings=embeddings, | |
) | |
print(vector_store.embeddings) | |
except: | |
# create the vectorstore | |
vector_store = create_new_vectorstore(collection_name, embeddings) | |
return vector_store | |
def parse_10K_file() -> None: | |
# Create the data directory if it doesn't exist | |
data_dir = "data" | |
os.makedirs(data_dir, exist_ok=True) | |
# Check if the file already exists | |
file_path = os.path.join(data_dir, "Meta_10k.pdf") | |
if not os.path.exists(file_path): | |
# Download the file | |
url = URL | |
response = requests.get(url) | |
# Save the file to the data directory | |
with open(file_path, "wb") as file: | |
file.write(response.content) | |
print("File downloaded successfully.") | |
else: | |
print("File already exists. Skipping download.") | |
# setup parser | |
parser = LlamaParse( | |
result_type=ResultType.MD, parsing_instruction=PARSING_INSTRUCTION | |
) | |
# load and parse the documet | |
file_extractor = {".pdf": parser} | |
llama_parse_documents = SimpleDirectoryReader( | |
input_files=["data/Meta_10k.pdf"], file_extractor=file_extractor | |
).load_data() | |
# save markdown file | |
data_file = "./data/output.md" | |
with open(data_file, "a") as f: | |
for doc in llama_parse_documents: | |
f.write(doc.text + "\n") | |
async def start() -> None: | |
# instantiate embeddings | |
embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
# get vectorstore | |
client = QdrantClient( | |
QDRANT_URL, | |
api_key=QDRANT_API_KEY, # For Qdrant Cloud, None for local instance | |
) | |
collection_name = "meta_10k" | |
qdrant_vectorstore = get_vectorstore(client, collection_name, embeddings) | |
# setup our retriever | |
qdrant_retriever = qdrant_vectorstore.as_retriever() | |
# setup rag prompt | |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
# setup the rag chain | |
chat_model = ChatOpenAI(model="gpt-3.5-turbo") | |
rag_chain = ( | |
{ | |
"question": itemgetter("question"), | |
"context": itemgetter("question") | qdrant_retriever, | |
} | |
| RunnablePassthrough().assign(context=itemgetter("context")) | |
| { | |
"response": rag_prompt | chat_model | StrOutputParser(), | |
"context": itemgetter("context"), | |
} | |
) | |
cl.user_session.set("rag_chain", rag_chain) | |
await cl.Message( | |
author="Assistant", content="Hi, I'm your Meta 10K Assistant! How can I help?" | |
).send() | |
async def main(message: cl.Message) -> None: | |
chain = cl.user_session.get("rag_chain") | |
cb = cl.AsyncLangchainCallbackHandler() | |
cb.answer_reached = True | |
# res=await chain.acall(message, callbacks=[cb]) | |
res = await chain.ainvoke( | |
{"question": message.content}, config=RunnableConfig(callbacks=[cb]) | |
) | |
print(f"response: {res}") | |
answer = res["response"] | |
await cl.Message(author="Assistant", content=answer).send() | |