André Fernandes commited on
Commit
48b647e
·
1 Parent(s): 0f764c5

added predict method for a classic ML classifier model (wip)

Browse files
Files changed (4) hide show
  1. app.py +55 -13
  2. models/iris.py +7 -0
  3. models/iris_v1.joblib +3 -0
  4. models/ml/train.py +30 -0
app.py CHANGED
@@ -1,47 +1,76 @@
1
- from typing import Optional
2
 
3
  from fastapi import FastAPI, HTTPException
4
  from pydantic import BaseModel
 
 
 
 
5
 
6
 
7
  class Model(BaseModel):
8
  id: int
9
  name: str
10
  param_count: Optional[int] = None
 
11
 
12
 
13
- app = FastAPI(
14
- title="ML Repository API",
15
- description="API for getting predictions from hosted ML models.",
16
- version="0.0.1")
17
-
18
-
19
- models = [Model(id=0, name="CNN"), Model(id=1, name="Transformer")]
20
- id_2_hosted_models = {
21
- model.id : model for model in models
22
  }
 
 
 
23
  model_names_2_id = {
24
- model.name.lower() : model.id for model in models
 
 
 
 
 
25
  }
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  @app.get("/")
29
  def greet_json():
30
  return {"Hello World": "Welcome to my ML Repository API!"}
31
 
 
32
  @app.get("/hosted")
33
  def list_models():
34
  "List all the hosted models."
35
  return models
36
 
 
37
  @app.get("/hosted/id/{model_id}")
38
  def get_by_id(model_id: int):
39
  "Get a specific model by its ID."
40
  if model_id not in id_2_hosted_models:
41
- raise HTTPException(status_code=404, detail=f"Model with id={model_id} not found")
42
 
43
  return id_2_hosted_models[model_id]
44
 
 
45
  @app.get("/hosted/name/{model_name}")
46
  def get_by_name(model_name: str):
47
  "Get a specific model by its name."
@@ -50,4 +79,17 @@ def get_by_name(model_name: str):
50
  if model_name not in model_names_2_id:
51
  raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
52
 
53
- return id_2_hosted_models[model_names_2_id[model_name]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Any
2
 
3
  from fastapi import FastAPI, HTTPException
4
  from pydantic import BaseModel
5
+ from contextlib import asynccontextmanager
6
+ from joblib import load
7
+
8
+ from models.iris import Iris
9
 
10
 
11
  class Model(BaseModel):
12
  id: int
13
  name: str
14
  param_count: Optional[int] = None
15
+ _model : Optional[Any] = None
16
 
17
 
18
+ models = {
19
+ "0" : Model(id=0, name="CNN"),
20
+ "1" : Model(id=1, name="Transformer"),
21
+ "2" : Model(id=2, name="Iris"),
 
 
 
 
 
22
  }
23
+ id_2_hosted_models = {
24
+ model.id : model for model in models.values()
25
+ }
26
  model_names_2_id = {
27
+ model.name.lower() : model.id for model in models.values()
28
+ }
29
+
30
+ #TODO: fix this mess ^^
31
+ ml_models = {
32
+ model.name : model for model in models.values()
33
  }
34
 
35
+ @asynccontextmanager
36
+ async def lifespan(app: FastAPI):
37
+ # Load the ML model
38
+ ml_models["Iris"]._model = load('models/iris_v1.joblib')
39
+ yield
40
+ # Clean up the ML models and release the resources
41
+ ml_models.clear()
42
+
43
+
44
+ ################################################################
45
+
46
+
47
+ app = FastAPI(
48
+ title="ML Repository API",
49
+ description="API for getting predictions from hosted ML models.",
50
+ version="0.0.1",
51
+ lifespan=lifespan)
52
+
53
 
54
  @app.get("/")
55
  def greet_json():
56
  return {"Hello World": "Welcome to my ML Repository API!"}
57
 
58
+
59
  @app.get("/hosted")
60
  def list_models():
61
  "List all the hosted models."
62
  return models
63
 
64
+
65
  @app.get("/hosted/id/{model_id}")
66
  def get_by_id(model_id: int):
67
  "Get a specific model by its ID."
68
  if model_id not in id_2_hosted_models:
69
+ raise HTTPException(status_code=404, detail=f"Model with 'id={model_id}' not found")
70
 
71
  return id_2_hosted_models[model_id]
72
 
73
+
74
  @app.get("/hosted/name/{model_name}")
75
  def get_by_name(model_name: str):
76
  "Get a specific model by its name."
 
79
  if model_name not in model_names_2_id:
80
  raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
81
 
82
+ return id_2_hosted_models[model_names_2_id[model_name]]
83
+
84
+
85
+ @app.post("/hosted/name/{model_name}/predict", tags=["Predictions"])
86
+ async def get_prediction(model_name: str, iris: Iris):
87
+
88
+ if model_name.lower() != "iris":
89
+ raise HTTPException(status_code=501, detail="Not implemented yet.")
90
+
91
+ data = dict(iris)['data']
92
+ prediction = ml_models["Iris"]._model.predict(data).tolist()
93
+ log_probs = ml_models["Iris"]._model.predict_proba(data).tolist()
94
+ return {"predictions": prediction,
95
+ "log_probs": log_probs}
models/iris.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from pydantic import BaseModel, conlist
4
+
5
+
6
+ class Iris(BaseModel):
7
+ data: List[conlist(float, min_length=4, max_length=4)] # type: ignore
models/iris_v1.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b4855f249d786bfaeb015eb7db4ee4d91948434a68a81285bfce06315054e6
3
+ size 3496
models/ml/train.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal, Optional
2
+
3
+ from joblib import dump
4
+ from sklearn import datasets
5
+ from sklearn.pipeline import Pipeline
6
+ from sklearn.preprocessing import MinMaxScaler
7
+ from sklearn.tree import DecisionTreeClassifier
8
+
9
+
10
+ def load_dataset(dataset_name: Literal["iris", "other"]):
11
+ if dataset_name != "iris":
12
+ raise NotImplementedError()
13
+
14
+ dataset = datasets.load_iris(return_X_y=True)
15
+ return dataset[0], dataset[1]
16
+
17
+ def train_ml_classifier(X, y, output_file: Optional[str] = None):
18
+ clf_pipeline = [('scaling', MinMaxScaler()),
19
+ ('classifier', DecisionTreeClassifier(random_state=42))]
20
+ pipeline = Pipeline(clf_pipeline)
21
+ pipeline.fit(X, y)
22
+
23
+ if output_file is not None:
24
+ dump(pipeline, output_file)
25
+
26
+
27
+ if __name__ == '__main__':
28
+
29
+ X, y = load_dataset('iris')
30
+ model = train_ml_classifier(X, y, output_file='./iris_v1.joblib')