Spaces:
Sleeping
Sleeping
André Fernandes
commited on
Commit
·
48b647e
1
Parent(s):
0f764c5
added predict method for a classic ML classifier model (wip)
Browse files- app.py +55 -13
- models/iris.py +7 -0
- models/iris_v1.joblib +3 -0
- models/ml/train.py +30 -0
app.py
CHANGED
@@ -1,47 +1,76 @@
|
|
1 |
-
from typing import Optional
|
2 |
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class Model(BaseModel):
|
8 |
id: int
|
9 |
name: str
|
10 |
param_count: Optional[int] = None
|
|
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
models = [Model(id=0, name="CNN"), Model(id=1, name="Transformer")]
|
20 |
-
id_2_hosted_models = {
|
21 |
-
model.id : model for model in models
|
22 |
}
|
|
|
|
|
|
|
23 |
model_names_2_id = {
|
24 |
-
model.name.lower() : model.id for model in models
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
@app.get("/")
|
29 |
def greet_json():
|
30 |
return {"Hello World": "Welcome to my ML Repository API!"}
|
31 |
|
|
|
32 |
@app.get("/hosted")
|
33 |
def list_models():
|
34 |
"List all the hosted models."
|
35 |
return models
|
36 |
|
|
|
37 |
@app.get("/hosted/id/{model_id}")
|
38 |
def get_by_id(model_id: int):
|
39 |
"Get a specific model by its ID."
|
40 |
if model_id not in id_2_hosted_models:
|
41 |
-
raise HTTPException(status_code=404, detail=f"Model with id={model_id} not found")
|
42 |
|
43 |
return id_2_hosted_models[model_id]
|
44 |
|
|
|
45 |
@app.get("/hosted/name/{model_name}")
|
46 |
def get_by_name(model_name: str):
|
47 |
"Get a specific model by its name."
|
@@ -50,4 +79,17 @@ def get_by_name(model_name: str):
|
|
50 |
if model_name not in model_names_2_id:
|
51 |
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
52 |
|
53 |
-
return id_2_hosted_models[model_names_2_id[model_name]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Any
|
2 |
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
+
from contextlib import asynccontextmanager
|
6 |
+
from joblib import load
|
7 |
+
|
8 |
+
from models.iris import Iris
|
9 |
|
10 |
|
11 |
class Model(BaseModel):
|
12 |
id: int
|
13 |
name: str
|
14 |
param_count: Optional[int] = None
|
15 |
+
_model : Optional[Any] = None
|
16 |
|
17 |
|
18 |
+
models = {
|
19 |
+
"0" : Model(id=0, name="CNN"),
|
20 |
+
"1" : Model(id=1, name="Transformer"),
|
21 |
+
"2" : Model(id=2, name="Iris"),
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
+
id_2_hosted_models = {
|
24 |
+
model.id : model for model in models.values()
|
25 |
+
}
|
26 |
model_names_2_id = {
|
27 |
+
model.name.lower() : model.id for model in models.values()
|
28 |
+
}
|
29 |
+
|
30 |
+
#TODO: fix this mess ^^
|
31 |
+
ml_models = {
|
32 |
+
model.name : model for model in models.values()
|
33 |
}
|
34 |
|
35 |
+
@asynccontextmanager
|
36 |
+
async def lifespan(app: FastAPI):
|
37 |
+
# Load the ML model
|
38 |
+
ml_models["Iris"]._model = load('models/iris_v1.joblib')
|
39 |
+
yield
|
40 |
+
# Clean up the ML models and release the resources
|
41 |
+
ml_models.clear()
|
42 |
+
|
43 |
+
|
44 |
+
################################################################
|
45 |
+
|
46 |
+
|
47 |
+
app = FastAPI(
|
48 |
+
title="ML Repository API",
|
49 |
+
description="API for getting predictions from hosted ML models.",
|
50 |
+
version="0.0.1",
|
51 |
+
lifespan=lifespan)
|
52 |
+
|
53 |
|
54 |
@app.get("/")
|
55 |
def greet_json():
|
56 |
return {"Hello World": "Welcome to my ML Repository API!"}
|
57 |
|
58 |
+
|
59 |
@app.get("/hosted")
|
60 |
def list_models():
|
61 |
"List all the hosted models."
|
62 |
return models
|
63 |
|
64 |
+
|
65 |
@app.get("/hosted/id/{model_id}")
|
66 |
def get_by_id(model_id: int):
|
67 |
"Get a specific model by its ID."
|
68 |
if model_id not in id_2_hosted_models:
|
69 |
+
raise HTTPException(status_code=404, detail=f"Model with 'id={model_id}' not found")
|
70 |
|
71 |
return id_2_hosted_models[model_id]
|
72 |
|
73 |
+
|
74 |
@app.get("/hosted/name/{model_name}")
|
75 |
def get_by_name(model_name: str):
|
76 |
"Get a specific model by its name."
|
|
|
79 |
if model_name not in model_names_2_id:
|
80 |
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
81 |
|
82 |
+
return id_2_hosted_models[model_names_2_id[model_name]]
|
83 |
+
|
84 |
+
|
85 |
+
@app.post("/hosted/name/{model_name}/predict", tags=["Predictions"])
|
86 |
+
async def get_prediction(model_name: str, iris: Iris):
|
87 |
+
|
88 |
+
if model_name.lower() != "iris":
|
89 |
+
raise HTTPException(status_code=501, detail="Not implemented yet.")
|
90 |
+
|
91 |
+
data = dict(iris)['data']
|
92 |
+
prediction = ml_models["Iris"]._model.predict(data).tolist()
|
93 |
+
log_probs = ml_models["Iris"]._model.predict_proba(data).tolist()
|
94 |
+
return {"predictions": prediction,
|
95 |
+
"log_probs": log_probs}
|
models/iris.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from pydantic import BaseModel, conlist
|
4 |
+
|
5 |
+
|
6 |
+
class Iris(BaseModel):
|
7 |
+
data: List[conlist(float, min_length=4, max_length=4)] # type: ignore
|
models/iris_v1.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08b4855f249d786bfaeb015eb7db4ee4d91948434a68a81285bfce06315054e6
|
3 |
+
size 3496
|
models/ml/train.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal, Optional
|
2 |
+
|
3 |
+
from joblib import dump
|
4 |
+
from sklearn import datasets
|
5 |
+
from sklearn.pipeline import Pipeline
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
|
9 |
+
|
10 |
+
def load_dataset(dataset_name: Literal["iris", "other"]):
|
11 |
+
if dataset_name != "iris":
|
12 |
+
raise NotImplementedError()
|
13 |
+
|
14 |
+
dataset = datasets.load_iris(return_X_y=True)
|
15 |
+
return dataset[0], dataset[1]
|
16 |
+
|
17 |
+
def train_ml_classifier(X, y, output_file: Optional[str] = None):
|
18 |
+
clf_pipeline = [('scaling', MinMaxScaler()),
|
19 |
+
('classifier', DecisionTreeClassifier(random_state=42))]
|
20 |
+
pipeline = Pipeline(clf_pipeline)
|
21 |
+
pipeline.fit(X, y)
|
22 |
+
|
23 |
+
if output_file is not None:
|
24 |
+
dump(pipeline, output_file)
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == '__main__':
|
28 |
+
|
29 |
+
X, y = load_dataset('iris')
|
30 |
+
model = train_ml_classifier(X, y, output_file='./iris_v1.joblib')
|