Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
@@ -59,8 +59,8 @@ class PointerNetworks(nn.Module):
|
|
59 |
self.nnEm = nn.Embedding(self.voca_size,self.word_dim,padding_idx=2000001)
|
60 |
#self.nnEm = nn.Embedding.from_pretrained(self.voc_embeddings,freeze=self.finedtuning,padding_idx=-1)
|
61 |
self.initEmbeddings(self.voc_embeddings)
|
62 |
-
if self.use_cuda:
|
63 |
-
|
64 |
|
65 |
|
66 |
|
@@ -102,17 +102,17 @@ class PointerNetworks(nn.Module):
|
|
102 |
h_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
103 |
c_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
104 |
|
105 |
-
if self.use_cuda:
|
106 |
-
|
107 |
-
|
108 |
|
109 |
return (h_0, c_0)
|
110 |
else:
|
111 |
|
112 |
h_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
113 |
|
114 |
-
if self.use_cuda:
|
115 |
-
|
116 |
|
117 |
|
118 |
return h_0
|
@@ -229,8 +229,8 @@ class PointerNetworks(nn.Module):
|
|
229 |
#print(curX)
|
230 |
|
231 |
x_index_var = Variable(torch.from_numpy(curX_index.astype(np.int64)))
|
232 |
-
if self.use_cuda:
|
233 |
-
|
234 |
cur_lookup = curX[x_index_var]
|
235 |
#print(cur_lookup)
|
236 |
|
@@ -277,8 +277,8 @@ class PointerNetworks(nn.Module):
|
|
277 |
# TODO: make it point backward, only consider predict_range in current time step
|
278 |
# align groundtruth
|
279 |
cur_groundy_var = Variable(torch.LongTensor([int(cur_groundy) - int(cur_start_index)]))
|
280 |
-
if self.use_cuda:
|
281 |
-
|
282 |
|
283 |
curencoder_hn_back = curencoder_hn[predict_range,:]
|
284 |
|
@@ -395,8 +395,8 @@ class PointerNetworks(nn.Module):
|
|
395 |
|
396 |
|
397 |
cur_groundy_var = Variable(torch.LongTensor([max(0,int(cur_groundy) - loopstart)]))
|
398 |
-
if self.use_cuda:
|
399 |
-
|
400 |
|
401 |
batch_loss = batch_loss + loss_function(cur_logists, cur_groundy_var)
|
402 |
|
|
|
59 |
self.nnEm = nn.Embedding(self.voca_size,self.word_dim,padding_idx=2000001)
|
60 |
#self.nnEm = nn.Embedding.from_pretrained(self.voc_embeddings,freeze=self.finedtuning,padding_idx=-1)
|
61 |
self.initEmbeddings(self.voc_embeddings)
|
62 |
+
#if self.use_cuda:
|
63 |
+
# self.nnEm = self.nnEm.cuda()
|
64 |
|
65 |
|
66 |
|
|
|
102 |
h_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
103 |
c_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
104 |
|
105 |
+
#if self.use_cuda:
|
106 |
+
# h_0 = h_0.cuda()
|
107 |
+
# c_0 = c_0.cuda()
|
108 |
|
109 |
return (h_0, c_0)
|
110 |
else:
|
111 |
|
112 |
h_0 = Variable(torch.zeros(self.num_encoder_bi*self.num_rnn_layers, batchsize, hsize))
|
113 |
|
114 |
+
#if self.use_cuda:
|
115 |
+
# h_0 = h_0.cuda()
|
116 |
|
117 |
|
118 |
return h_0
|
|
|
229 |
#print(curX)
|
230 |
|
231 |
x_index_var = Variable(torch.from_numpy(curX_index.astype(np.int64)))
|
232 |
+
#if self.use_cuda:
|
233 |
+
# x_index_var = x_index_var.cuda()
|
234 |
cur_lookup = curX[x_index_var]
|
235 |
#print(cur_lookup)
|
236 |
|
|
|
277 |
# TODO: make it point backward, only consider predict_range in current time step
|
278 |
# align groundtruth
|
279 |
cur_groundy_var = Variable(torch.LongTensor([int(cur_groundy) - int(cur_start_index)]))
|
280 |
+
#if self.use_cuda:
|
281 |
+
# cur_groundy_var = cur_groundy_var.cuda()
|
282 |
|
283 |
curencoder_hn_back = curencoder_hn[predict_range,:]
|
284 |
|
|
|
395 |
|
396 |
|
397 |
cur_groundy_var = Variable(torch.LongTensor([max(0,int(cur_groundy) - loopstart)]))
|
398 |
+
#if self.use_cuda:
|
399 |
+
# cur_groundy_var = cur_groundy_var.cuda()
|
400 |
|
401 |
batch_loss = batch_loss + loss_function(cur_logists, cur_groundy_var)
|
402 |
|