Spaces:
Running
Running
import gradio as gr | |
from threading import Thread | |
from PIL import Image | |
import moondream as md | |
from huggingface_hub import hf_hub_download | |
# Download model at runtime | |
model_path = hf_hub_download( | |
repo_id="andito/moondream05", | |
filename="moondream-0_5b-int8.mf", | |
) | |
model = md.vl(model=model_path) | |
def model_inference(input_dict, history): | |
# Extract image from message if present | |
if input_dict.get("files"): | |
image_path = input_dict["files"][0] | |
if isinstance(image_path, dict) and "path" in image_path: | |
image_path = image_path["path"] | |
image = Image.open(image_path) | |
encoded_image = model.encode_image(image) | |
# If there's a question, use query | |
text = input_dict.get("text", "") | |
if text not in ["", "Caption"]: | |
response = model.query(encoded_image, text)["answer"] | |
# Otherwise generate a caption | |
else: | |
response = model.caption(encoded_image)["caption"] | |
return response | |
else: | |
return "Please provide an image to analyze." | |
examples=[ | |
[{"text": "Caption", "files": ["example_images/demo-1.jpg"]}, []], | |
[{"text": "Caption", "files": ["example_images/demo-2.jpg"]}, []], | |
[{"text": "What art era do this artpiece belong to?", "files": ["example_images/rococo.jpg"]}, []], | |
[{"text": "Caption", "files": ["example_images/rococo.jpg"]}, []], | |
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, []], | |
[{"text": "Caption", "files": ["example_images/examples_wat_arun.jpg"]}, []], | |
[{"text": "Caption", "files": ["example_images/aaron.jpeg"]}, []], | |
] | |
demo = gr.ChatInterface(fn=model_inference, title="Moondream 0.5B: The World's Smallest Vision-Language Model", | |
description="Play with [Moondream 0.5B](https://huggingface.co/vikhyatk/moondream2) in this demo. To get started, upload an image and text or try one of the examples.", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="single"), stop_btn="Stop Generation", multimodal=True, | |
additional_inputs=[], cache_examples=False) | |
demo.launch(debug=True) |