Spaces:
Running
on
Zero
Running
on
Zero
Add description and links to nb/blog
Browse files
app.py
CHANGED
@@ -14,7 +14,9 @@ model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA',
|
|
14 |
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
|
15 |
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
20 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
@@ -58,6 +60,7 @@ css = """
|
|
58 |
"""
|
59 |
|
60 |
with gr.Blocks(css=css) as demo:
|
|
|
61 |
gr.Markdown(DESCRIPTION)
|
62 |
with gr.Tab(label="Florence-2 Image Captioning"):
|
63 |
with gr.Row():
|
@@ -79,7 +82,7 @@ with gr.Blocks(css=css) as demo:
|
|
79 |
outputs=[output_text],
|
80 |
fn=process_image,
|
81 |
cache_examples=True,
|
82 |
-
label='Try examples'
|
83 |
)
|
84 |
|
85 |
submit_btn.click(process_image, [input_img, text_input], [output_text])
|
|
|
14 |
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
|
15 |
|
16 |
|
17 |
+
TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
|
18 |
+
DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
|
19 |
+
|
20 |
|
21 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
22 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
|
60 |
"""
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
+
gr.Markdown(TITLE)
|
64 |
gr.Markdown(DESCRIPTION)
|
65 |
with gr.Tab(label="Florence-2 Image Captioning"):
|
66 |
with gr.Row():
|
|
|
82 |
outputs=[output_text],
|
83 |
fn=process_image,
|
84 |
cache_examples=True,
|
85 |
+
label='Try the examples below'
|
86 |
)
|
87 |
|
88 |
submit_btn.click(process_image, [input_img, text_input], [output_text])
|