Musterdatenkatalog / utils /get_coordinates.py
Josephina's picture
skripts for map creation in app
d689310
raw
history blame
7.56 kB
import pandas as pd
import os
import logging
import numpy as np
import ast
import math
from pathlib import Path
# define logger
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("process_data.log"),
logging.StreamHandler(),
],
)
CITIES_DATA = os.path.join("data", "raw", "2024_06_24_cities_0624_v5.csv")
DATA_ENRICHED = os.path.join("data", "cities_enriched.csv")
# meta data for kreis codes ( variable in coordinates table)
NAME_CODE_DATA = os.path.join("data", "raw", "name_kreiscode.csv")
CODES_KOMMUNEN = os.path.join("data", "raw", "Deutschlandatlas.csv")
# coordinates for Gemeinden
COORDINATES = os.path.join("data", "raw", "coordinates_plz_kreiscode.csv")
if not os.path.exists(os.path.join("data", "preprocessed")):
Path(os.path.join("data", "preprocessed")).mkdir(parents=True, exist_ok=True)
def load_cities(path: str) -> pd.DataFrame:
df = pd.read_csv(path)
df.drop(columns=["name"], inplace=True)
df.drop_duplicates(inplace=True)
return df
def create_code_mapper(path: str) -> dict:
name_code = pd.read_csv(
path, sep=";", encoding="latin_1", names=["Datum", "Code", "Name", "Fläche"]
)[7:13929]
# adds all Landkreise and gemeinden to the mapper
code_mapper = {
(key if type(key) != float else "0000"): value
for key, value in zip(name_code["Name"], name_code["Code"])
}
# adds all gemeindeverbände to the mapper
kommunen_code = pd.read_csv(CODES_KOMMUNEN, sep=";", encoding="latin_1")
code_mapper_update = {
key: value
for key, value in zip(kommunen_code["name"], kommunen_code["Gebietskennziffer"])
}
print(code_mapper_update)
code_mapper.update(code_mapper_update)
return code_mapper
def map_code(org_name, code_mapper):
# Split the org_name string into parts
parts = org_name.split()
# print(parts, type(parts[0]))
# Find a key in code_mapper that contains all parts of the split org_name
for key in code_mapper.keys():
# look first for whole name (cases like "Landkreis München" , "kreisfreie Stadt München")
if all(part in key for part in parts):
return code_mapper[key]
elif any(part in key for part in parts):
return code_mapper[key]
# Return None or a default value if no key matches all parts
return None
# main goal with this: identify Landkreise and their codes
def add_code(df: pd.DataFrame, code_mapper: dict) -> pd.DataFrame:
"""Add the (Kreis-/Gemeinde-)code to the dataframe based on the name of the (administrative) region."""
df["Code"] = df["Kommune"].apply(lambda x: map_code(x, code_mapper))
df["Code"] = df["Code"].apply(lambda x: int(x) if x is not None else None)
return df
def org_in_plzname(org_name, plz_name):
parts = org_name.split()
if any(part in plz_name for part in parts):
return True
else:
return False
def load_coordinates(path: str) -> pd.DataFrame:
return pd.read_csv(path, sep=";")
# maybe 2d coordinates instead of geometry
def merge_coordinates(df: pd.DataFrame, coordinates: pd.DataFrame) -> pd.DataFrame:
"""Merge the coordinates of the regions to the dataframe. Try to use
Kreiscode first, if it consists of 5 digits. Else, use the name of
the region.
"""
geometries = []
for row in df.itertuples():
# adds coordinates for Landkreise
if pd.notna(row.Code) and (
len(str(int(row.Code))) == 5 or len(str(int(row.Code))) == 4
):
coor = coordinates[coordinates["Kreis code"] == row.Code]
geometry = [co.geo_point_2d for co in coor.itertuples()]
geometries.append(geometry)
else:
coor = coordinates[
coordinates["PLZ Name (short)"].apply(
lambda x: org_in_plzname(row.Kommune, x)
)
]
# adds coordinates for Gemeindenamen in coordinates table
if len(coor) > 0:
geometry = [co.geo_point_2d for co in coor.itertuples()]
geometries.append(geometry)
# adds coordinates from infered kreis code if Gebietskennziffer available
elif row.Code and pd.notna(row.Code): # and not math.isnan(row.Code):
if len(str(int(row.Code))) < 4:
code_str = str(int(row.Code))
coor = coordinates[
coordinates["Kreis code"]
.astype(str)
.apply(lambda x: x[: len(code_str)])
== code_str
]
geometry = [co.geo_point_2d for co in coor.itertuples()]
geometries.append(geometry)
elif str(row.Code)[:2] in ["11", "12", "13", "14", "15", "16"]:
coor = coordinates[
coordinates["Kreis code"] == int(str(row.Code)[:5])
]
else:
coor = coordinates[
coordinates["Kreis code"] == int(str(row.Code)[:4])
]
geometry = [co.geo_point_2d for co in coor.itertuples()]
geometries.append(geometry)
else:
geometries.append([])
df["Geometry"] = geometries
return df
def aggregate_coordinates(geo_element: str) -> list:
# Convert the string representation of a list into an actual list
if geo_element == "[]" or geo_element == []:
return []
else:
actual_list = geo_element # ast.literal_eval(geo_element)
processed_list = [list(map(float, coord.split(", "))) for coord in actual_list]
# print(processed_list)
if len(processed_list) > 1:
coordinates = np.mean(np.array(processed_list), axis=0)
else:
coordinates = np.array(processed_list[0])
return coordinates
if __name__ == "__main__":
code_mapper = create_code_mapper(NAME_CODE_DATA)
logging.info("Code mapper created")
cities = load_cities(CITIES_DATA)
data = add_code(cities, code_mapper)
missing = data[data["Code"].isnull()]
logging.info(f"Missing values Gebietscode: {len(missing)}")
data.to_csv(
os.path.join("data", "preprocessed", "cities_enriched_with_code.csv"),
index=False,
)
# data = pd.read_csv(
# os.path.join("data", "preprocessed", "cities_enriched_with_code.csv"))
data["Code"] = data["Code"].apply(lambda x: int(x) if pd.notna(x) else None)
coordinates = load_coordinates(COORDINATES)
data = merge_coordinates(data, coordinates)
data.to_csv(
os.path.join("data", "preprocessed", "cities_enriched_with_coordinates.csv"),
index=False,
)
logging.info("Coordinates merged")
missing = data[
[
all([x, y])
for x, y in zip(
data["Geometry"].apply(lambda x: x == []), data["Code"].isnull()
)
]
]
missing_geometry = data[data["Geometry"].apply(lambda x: x == [])]
logging.info(f"Missing values: {len(missing)}")
logging.info(f"Missing geometry: {len(missing_geometry)}")
missing_geometry.to_csv(os.path.join("data", "missing_values.csv"), index=False)
# data = pd.read_csv(os.path.join("data", "cities_enriched_manually.csv"))
data["Geometry"] = data["Geometry"].apply(aggregate_coordinates)
data.to_csv(DATA_ENRICHED, index=False)