Spaces:
Runtime error
Runtime error
| import argparse | |
| import copy | |
| import os | |
| from pathlib import Path | |
| import logging | |
| from collections import OrderedDict | |
| from pprint import pprint | |
| import random | |
| import gradio as gr | |
| from argparse import Namespace | |
| import numpy as np | |
| from omegaconf import OmegaConf, SCMode | |
| import torch | |
| from einops import rearrange, repeat | |
| import cv2 | |
| from PIL import Image | |
| from diffusers.models.autoencoder_kl import AutoencoderKL | |
| from mmcm.utils.load_util import load_pyhon_obj | |
| from mmcm.utils.seed_util import set_all_seed | |
| from mmcm.utils.signature import get_signature_of_string | |
| from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table | |
| from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d | |
| from mmcm.utils.str_util import clean_str_for_save | |
| from mmcm.vision.data.video_dataset import DecordVideoDataset | |
| from musev.auto_prompt.util import generate_prompts | |
| from musev.models.facein_loader import load_facein_extractor_and_proj_by_name | |
| from musev.models.referencenet_loader import load_referencenet_by_name | |
| from musev.models.ip_adapter_loader import ( | |
| load_ip_adapter_vision_clip_encoder_by_name, | |
| load_vision_clip_encoder_by_name, | |
| load_ip_adapter_image_proj_by_name, | |
| ) | |
| from musev.models.ip_adapter_face_loader import ( | |
| load_ip_adapter_face_extractor_and_proj_by_name, | |
| ) | |
| from musev.pipelines.pipeline_controlnet_predictor import ( | |
| DiffusersPipelinePredictor, | |
| ) | |
| from musev.models.referencenet import ReferenceNet2D | |
| from musev.models.unet_loader import load_unet_by_name | |
| from musev.utils.util import save_videos_grid_with_opencv | |
| from musev import logger | |
| use_v2v_predictor = False | |
| if use_v2v_predictor: | |
| from gradio_video2video import sd_predictor as video_sd_predictor | |
| logger.setLevel("INFO") | |
| file_dir = os.path.dirname(__file__) | |
| PROJECT_DIR = os.path.join(os.path.dirname(__file__), "../..") | |
| DATA_DIR = os.path.join(PROJECT_DIR, "data") | |
| CACHE_PATH = "./t2v_input_image" | |
| # TODO:use group to group arguments | |
| args_dict = { | |
| "add_static_video_prompt": False, | |
| "context_batch_size": 1, | |
| "context_frames": 12, | |
| "context_overlap": 4, | |
| "context_schedule": "uniform_v2", | |
| "context_stride": 1, | |
| "cross_attention_dim": 768, | |
| "face_image_path": None, | |
| "facein_model_cfg_path": os.path.join(PROJECT_DIR, "configs/model/facein.py"), | |
| "facein_model_name": None, | |
| "facein_scale": 1.0, | |
| "fix_condition_images": False, | |
| "fixed_ip_adapter_image": True, | |
| "fixed_refer_face_image": True, | |
| "fixed_refer_image": True, | |
| "fps": 4, | |
| "guidance_scale": 7.5, | |
| "height": None, | |
| "img_length_ratio": 1.0, | |
| "img_weight": 0.001, | |
| "interpolation_factor": 1, | |
| "ip_adapter_face_model_cfg_path": os.path.join( | |
| PROJECT_DIR, "configs/model/ip_adapter.py" | |
| ), | |
| "ip_adapter_face_model_name": None, | |
| "ip_adapter_face_scale": 1.0, | |
| "ip_adapter_model_cfg_path": os.path.join( | |
| PROJECT_DIR, "configs/model/ip_adapter.py" | |
| ), | |
| "ip_adapter_model_name": "musev_referencenet", | |
| "ip_adapter_scale": 1.0, | |
| "ipadapter_image_path": None, | |
| "lcm_model_cfg_path": os.path.join(PROJECT_DIR, "configs/model/lcm_model.py"), | |
| "lcm_model_name": None, | |
| "log_level": "INFO", | |
| "motion_speed": 8.0, | |
| "n_batch": 1, | |
| "n_cols": 3, | |
| "n_repeat": 1, | |
| "n_vision_condition": 1, | |
| "need_hist_match": False, | |
| "need_img_based_video_noise": True, | |
| "need_redraw": False, | |
| "negative_prompt": "V2", | |
| "negprompt_cfg_path": os.path.join(PROJECT_DIR, "configs/model/negative_prompt.py"), | |
| "noise_type": "video_fusion", | |
| "num_inference_steps": 30, | |
| "output_dir": "./results/", | |
| "overwrite": False, | |
| "prompt_only_use_image_prompt": False, | |
| "record_mid_video_latents": False, | |
| "record_mid_video_noises": False, | |
| "redraw_condition_image": False, | |
| "redraw_condition_image_with_facein": True, | |
| "redraw_condition_image_with_ip_adapter_face": True, | |
| "redraw_condition_image_with_ipdapter": True, | |
| "redraw_condition_image_with_referencenet": True, | |
| "referencenet_image_path": None, | |
| "referencenet_model_cfg_path": os.path.join( | |
| PROJECT_DIR, "configs/model/referencenet.py" | |
| ), | |
| "referencenet_model_name": "musev_referencenet", | |
| "save_filetype": "mp4", | |
| "save_images": False, | |
| "sd_model_cfg_path": os.path.join(PROJECT_DIR, "configs/model/T2I_all_model.py"), | |
| "sd_model_name": "majicmixRealv6Fp16", | |
| "seed": None, | |
| "strength": 0.8, | |
| "target_datas": "boy_dance2", | |
| "test_data_path": os.path.join( | |
| PROJECT_DIR, "configs/infer/testcase_video_famous.yaml" | |
| ), | |
| "time_size": 12, | |
| "unet_model_cfg_path": os.path.join(PROJECT_DIR, "configs/model/motion_model.py"), | |
| "unet_model_name": "musev_referencenet", | |
| "use_condition_image": True, | |
| "use_video_redraw": True, | |
| "vae_model_path": os.path.join(PROJECT_DIR, "checkpoints/vae/sd-vae-ft-mse"), | |
| "video_guidance_scale": 3.5, | |
| "video_guidance_scale_end": None, | |
| "video_guidance_scale_method": "linear", | |
| "video_negative_prompt": "V2", | |
| "video_num_inference_steps": 10, | |
| "video_overlap": 1, | |
| "vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor", | |
| "vision_clip_model_path": os.path.join( | |
| PROJECT_DIR, "checkpoints/IP-Adapter/models/image_encoder" | |
| ), | |
| "w_ind_noise": 0.5, | |
| "width": None, | |
| "write_info": False, | |
| } | |
| args = Namespace(**args_dict) | |
| print("args") | |
| pprint(args) | |
| print("\n") | |
| logger.setLevel(args.log_level) | |
| overwrite = args.overwrite | |
| cross_attention_dim = args.cross_attention_dim | |
| time_size = args.time_size # 一次视频生成的帧数 | |
| n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch | |
| fps = args.fps | |
| # need_redraw = args.need_redraw # 视频重绘视频使用视频网络 | |
| # use_video_redraw = args.use_video_redraw # 视频重绘视频使用视频网络 | |
| fix_condition_images = args.fix_condition_images | |
| use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像 | |
| redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的 | |
| need_img_based_video_noise = ( | |
| args.need_img_based_video_noise | |
| ) # 视频加噪过程中是否使用首帧 condition_images | |
| img_weight = args.img_weight | |
| height = args.height # 如果测试数据中没有单独指定宽高,则默认这里 | |
| width = args.width # 如果测试数据中没有单独指定宽高,则默认这里 | |
| img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里 | |
| n_cols = args.n_cols | |
| noise_type = args.noise_type | |
| strength = args.strength # 首帧重绘程度参数 | |
| video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数 | |
| guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数 | |
| video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数 | |
| num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数 | |
| seed = args.seed | |
| save_filetype = args.save_filetype | |
| save_images = args.save_images | |
| sd_model_cfg_path = args.sd_model_cfg_path | |
| sd_model_name = ( | |
| args.sd_model_name | |
| if args.sd_model_name in ["all", "None"] | |
| else args.sd_model_name.split(",") | |
| ) | |
| unet_model_cfg_path = args.unet_model_cfg_path | |
| unet_model_name = args.unet_model_name | |
| test_data_path = args.test_data_path | |
| target_datas = ( | |
| args.target_datas if args.target_datas == "all" else args.target_datas.split(",") | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 | |
| negprompt_cfg_path = args.negprompt_cfg_path | |
| video_negative_prompt = args.video_negative_prompt | |
| negative_prompt = args.negative_prompt | |
| motion_speed = args.motion_speed | |
| need_hist_match = args.need_hist_match | |
| video_guidance_scale_end = args.video_guidance_scale_end | |
| video_guidance_scale_method = args.video_guidance_scale_method | |
| add_static_video_prompt = args.add_static_video_prompt | |
| n_vision_condition = args.n_vision_condition | |
| lcm_model_cfg_path = args.lcm_model_cfg_path | |
| lcm_model_name = args.lcm_model_name | |
| referencenet_model_cfg_path = args.referencenet_model_cfg_path | |
| referencenet_model_name = args.referencenet_model_name | |
| ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path | |
| ip_adapter_model_name = args.ip_adapter_model_name | |
| vision_clip_model_path = args.vision_clip_model_path | |
| vision_clip_extractor_class_name = args.vision_clip_extractor_class_name | |
| facein_model_cfg_path = args.facein_model_cfg_path | |
| facein_model_name = args.facein_model_name | |
| ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path | |
| ip_adapter_face_model_name = args.ip_adapter_face_model_name | |
| fixed_refer_image = args.fixed_refer_image | |
| fixed_ip_adapter_image = args.fixed_ip_adapter_image | |
| fixed_refer_face_image = args.fixed_refer_face_image | |
| redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet | |
| redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter | |
| redraw_condition_image_with_facein = args.redraw_condition_image_with_facein | |
| redraw_condition_image_with_ip_adapter_face = ( | |
| args.redraw_condition_image_with_ip_adapter_face | |
| ) | |
| w_ind_noise = args.w_ind_noise | |
| ip_adapter_scale = args.ip_adapter_scale | |
| facein_scale = args.facein_scale | |
| ip_adapter_face_scale = args.ip_adapter_face_scale | |
| face_image_path = args.face_image_path | |
| ipadapter_image_path = args.ipadapter_image_path | |
| referencenet_image_path = args.referencenet_image_path | |
| vae_model_path = args.vae_model_path | |
| prompt_only_use_image_prompt = args.prompt_only_use_image_prompt | |
| # serial_denoise parameter start | |
| record_mid_video_noises = args.record_mid_video_noises | |
| record_mid_video_latents = args.record_mid_video_latents | |
| video_overlap = args.video_overlap | |
| # serial_denoise parameter end | |
| # parallel_denoise parameter start | |
| context_schedule = args.context_schedule | |
| context_frames = args.context_frames | |
| context_stride = args.context_stride | |
| context_overlap = args.context_overlap | |
| context_batch_size = args.context_batch_size | |
| interpolation_factor = args.interpolation_factor | |
| n_repeat = args.n_repeat | |
| # parallel_denoise parameter end | |
| b = 1 | |
| negative_embedding = [ | |
| [os.path.join(PROJECT_DIR, "checkpoints/embedding/badhandv4.pt"), "badhandv4"], | |
| [ | |
| os.path.join(PROJECT_DIR, "checkpoints/embedding/ng_deepnegative_v1_75t.pt"), | |
| "ng_deepnegative_v1_75t", | |
| ], | |
| [ | |
| os.path.join(PROJECT_DIR, "checkpoints/embedding/EasyNegativeV2.safetensors"), | |
| "EasyNegativeV2", | |
| ], | |
| [ | |
| os.path.join(PROJECT_DIR, "checkpoints/embedding/bad_prompt_version2-neg.pt"), | |
| "bad_prompt_version2-neg", | |
| ], | |
| ] | |
| prefix_prompt = "" | |
| suffix_prompt = ", beautiful, masterpiece, best quality" | |
| suffix_prompt = "" | |
| # sd model parameters | |
| if sd_model_name != "None": | |
| # 使用 cfg_path 里的sd_model_path | |
| sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG") | |
| sd_model_params_dict = { | |
| k: v | |
| for k, v in sd_model_params_dict_src.items() | |
| if sd_model_name == "all" or k in sd_model_name | |
| } | |
| else: | |
| # 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None, | |
| sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0] | |
| sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}} | |
| sd_model_params_dict_src = sd_model_params_dict | |
| if len(sd_model_params_dict) == 0: | |
| raise ValueError( | |
| "has not target model, please set one of {}".format( | |
| " ".join(list(sd_model_params_dict_src.keys())) | |
| ) | |
| ) | |
| print("running model, T2I SD") | |
| pprint(sd_model_params_dict) | |
| # lcm | |
| if lcm_model_name is not None: | |
| lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG") | |
| print("lcm_model_params_dict_src") | |
| lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name] | |
| else: | |
| lcm_lora_dct = None | |
| print("lcm: ", lcm_model_name, lcm_lora_dct) | |
| # motion net parameters | |
| if os.path.isdir(unet_model_cfg_path): | |
| unet_model_path = unet_model_cfg_path | |
| elif os.path.isfile(unet_model_cfg_path): | |
| unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG") | |
| print("unet_model_params_dict_src", unet_model_params_dict_src.keys()) | |
| unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"] | |
| else: | |
| raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}") | |
| print("unet: ", unet_model_name, unet_model_path) | |
| # referencenet | |
| if referencenet_model_name is not None: | |
| if os.path.isdir(referencenet_model_cfg_path): | |
| referencenet_model_path = referencenet_model_cfg_path | |
| elif os.path.isfile(referencenet_model_cfg_path): | |
| referencenet_model_params_dict_src = load_pyhon_obj( | |
| referencenet_model_cfg_path, "MODEL_CFG" | |
| ) | |
| print( | |
| "referencenet_model_params_dict_src", | |
| referencenet_model_params_dict_src.keys(), | |
| ) | |
| referencenet_model_path = referencenet_model_params_dict_src[ | |
| referencenet_model_name | |
| ]["net"] | |
| else: | |
| raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}") | |
| else: | |
| referencenet_model_path = None | |
| print("referencenet: ", referencenet_model_name, referencenet_model_path) | |
| # ip_adapter | |
| if ip_adapter_model_name is not None: | |
| ip_adapter_model_params_dict_src = load_pyhon_obj( | |
| ip_adapter_model_cfg_path, "MODEL_CFG" | |
| ) | |
| print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys()) | |
| ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[ | |
| ip_adapter_model_name | |
| ] | |
| else: | |
| ip_adapter_model_params_dict = None | |
| print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict) | |
| # facein | |
| if facein_model_name is not None: | |
| facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG") | |
| print("facein_model_params_dict_src", facein_model_params_dict_src.keys()) | |
| facein_model_params_dict = facein_model_params_dict_src[facein_model_name] | |
| else: | |
| facein_model_params_dict = None | |
| print("facein: ", facein_model_name, facein_model_params_dict) | |
| # ip_adapter_face | |
| if ip_adapter_face_model_name is not None: | |
| ip_adapter_face_model_params_dict_src = load_pyhon_obj( | |
| ip_adapter_face_model_cfg_path, "MODEL_CFG" | |
| ) | |
| print( | |
| "ip_adapter_face_model_params_dict_src", | |
| ip_adapter_face_model_params_dict_src.keys(), | |
| ) | |
| ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[ | |
| ip_adapter_face_model_name | |
| ] | |
| else: | |
| ip_adapter_face_model_params_dict = None | |
| print( | |
| "ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict | |
| ) | |
| # negative_prompt | |
| def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10): | |
| name = negative_prompt[:n] | |
| if cfg_path is not None and cfg_path not in ["None", "none"]: | |
| dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG") | |
| negative_prompt = dct[negative_prompt]["prompt"] | |
| return name, negative_prompt | |
| negtive_prompt_length = 10 | |
| video_negative_prompt_name, video_negative_prompt = get_negative_prompt( | |
| video_negative_prompt, | |
| cfg_path=negprompt_cfg_path, | |
| n=negtive_prompt_length, | |
| ) | |
| negative_prompt_name, negative_prompt = get_negative_prompt( | |
| negative_prompt, | |
| cfg_path=negprompt_cfg_path, | |
| n=negtive_prompt_length, | |
| ) | |
| print("video_negprompt", video_negative_prompt_name, video_negative_prompt) | |
| print("negprompt", negative_prompt_name, negative_prompt) | |
| output_dir = args.output_dir | |
| os.makedirs(output_dir, exist_ok=True) | |
| # test_data_parameters | |
| def load_yaml(path): | |
| tasks = OmegaConf.to_container( | |
| OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True | |
| ) | |
| return tasks | |
| # if test_data_path.endswith(".yaml"): | |
| # test_datas_src = load_yaml(test_data_path) | |
| # elif test_data_path.endswith(".csv"): | |
| # test_datas_src = generate_tasks_from_table(test_data_path) | |
| # else: | |
| # raise ValueError("expect yaml or csv, but given {}".format(test_data_path)) | |
| # test_datas = [ | |
| # test_data | |
| # for test_data in test_datas_src | |
| # if target_datas == "all" or test_data.get("name", None) in target_datas | |
| # ] | |
| # test_datas = fiss_tasks(test_datas) | |
| # test_datas = generate_prompts(test_datas) | |
| # n_test_datas = len(test_datas) | |
| # if n_test_datas == 0: | |
| # raise ValueError( | |
| # "n_test_datas == 0, set target_datas=None or set atleast one of {}".format( | |
| # " ".join(list(d.get("name", "None") for d in test_datas_src)) | |
| # ) | |
| # ) | |
| # print("n_test_datas", n_test_datas) | |
| # # pprint(test_datas) | |
| def read_image(path): | |
| name = os.path.basename(path).split(".")[0] | |
| image = read_image_as_5d(path) | |
| return image, name | |
| def read_image_lst(path): | |
| images_names = [read_image(x) for x in path] | |
| images, names = zip(*images_names) | |
| images = np.concatenate(images, axis=2) | |
| name = "_".join(names) | |
| return images, name | |
| def read_image_and_name(path): | |
| if isinstance(path, str): | |
| path = [path] | |
| images, name = read_image_lst(path) | |
| return images, name | |
| if referencenet_model_name is not None and not use_v2v_predictor: | |
| referencenet = load_referencenet_by_name( | |
| model_name=referencenet_model_name, | |
| # sd_model=sd_model_path, | |
| # sd_model=os.path.join(PROJECT_DIR, "checkpoints//Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth"), | |
| sd_referencenet_model=referencenet_model_path, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| else: | |
| referencenet = None | |
| referencenet_model_name = "no" | |
| if vision_clip_extractor_class_name is not None and not use_v2v_predictor: | |
| vision_clip_extractor = load_vision_clip_encoder_by_name( | |
| ip_image_encoder=vision_clip_model_path, | |
| vision_clip_extractor_class_name=vision_clip_extractor_class_name, | |
| ) | |
| logger.info( | |
| f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}" | |
| ) | |
| else: | |
| vision_clip_extractor = None | |
| logger.info(f"vision_clip_extractor, None") | |
| if ip_adapter_model_name is not None and not use_v2v_predictor: | |
| ip_adapter_image_proj = load_ip_adapter_image_proj_by_name( | |
| model_name=ip_adapter_model_name, | |
| ip_image_encoder=ip_adapter_model_params_dict.get( | |
| "ip_image_encoder", vision_clip_model_path | |
| ), | |
| ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"], | |
| cross_attention_dim=cross_attention_dim, | |
| clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"], | |
| clip_extra_context_tokens=ip_adapter_model_params_dict[ | |
| "clip_extra_context_tokens" | |
| ], | |
| ip_scale=ip_adapter_model_params_dict["ip_scale"], | |
| device=device, | |
| ) | |
| else: | |
| ip_adapter_image_proj = None | |
| ip_adapter_model_name = "no" | |
| for model_name, sd_model_params in sd_model_params_dict.items(): | |
| lora_dict = sd_model_params.get("lora", None) | |
| model_sex = sd_model_params.get("sex", None) | |
| model_style = sd_model_params.get("style", None) | |
| sd_model_path = sd_model_params["sd"] | |
| test_model_vae_model_path = sd_model_params.get("vae", vae_model_path) | |
| unet = ( | |
| load_unet_by_name( | |
| model_name=unet_model_name, | |
| sd_unet_model=unet_model_path, | |
| sd_model=sd_model_path, | |
| # sd_model=os.path.join(PROJECT_DIR, "checkpoints//Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth"), | |
| cross_attention_dim=cross_attention_dim, | |
| need_t2i_facein=facein_model_name is not None, | |
| # facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制 | |
| strict=not (facein_model_name is not None), | |
| need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None, | |
| ) | |
| if not use_v2v_predictor | |
| else None | |
| ) | |
| if facein_model_name is not None and not use_v2v_predictor: | |
| ( | |
| face_emb_extractor, | |
| facein_image_proj, | |
| ) = load_facein_extractor_and_proj_by_name( | |
| model_name=facein_model_name, | |
| ip_image_encoder=facein_model_params_dict["ip_image_encoder"], | |
| ip_ckpt=facein_model_params_dict["ip_ckpt"], | |
| cross_attention_dim=cross_attention_dim, | |
| clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"], | |
| clip_extra_context_tokens=facein_model_params_dict[ | |
| "clip_extra_context_tokens" | |
| ], | |
| ip_scale=facein_model_params_dict["ip_scale"], | |
| device=device, | |
| # facein目前没有参与unet中的训练,需要单独载入参数 | |
| unet=unet, | |
| ) | |
| else: | |
| face_emb_extractor = None | |
| facein_image_proj = None | |
| if ip_adapter_face_model_name is not None and not use_v2v_predictor: | |
| ( | |
| ip_adapter_face_emb_extractor, | |
| ip_adapter_face_image_proj, | |
| ) = load_ip_adapter_face_extractor_and_proj_by_name( | |
| model_name=ip_adapter_face_model_name, | |
| ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"], | |
| ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"], | |
| cross_attention_dim=cross_attention_dim, | |
| clip_embeddings_dim=ip_adapter_face_model_params_dict[ | |
| "clip_embeddings_dim" | |
| ], | |
| clip_extra_context_tokens=ip_adapter_face_model_params_dict[ | |
| "clip_extra_context_tokens" | |
| ], | |
| ip_scale=ip_adapter_face_model_params_dict["ip_scale"], | |
| device=device, | |
| unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数 | |
| ) | |
| else: | |
| ip_adapter_face_emb_extractor = None | |
| ip_adapter_face_image_proj = None | |
| print("test_model_vae_model_path", test_model_vae_model_path) | |
| sd_predictor = ( | |
| DiffusersPipelinePredictor( | |
| sd_model_path=sd_model_path, | |
| unet=unet, | |
| lora_dict=lora_dict, | |
| lcm_lora_dct=lcm_lora_dct, | |
| device=device, | |
| dtype=torch_dtype, | |
| negative_embedding=negative_embedding, | |
| referencenet=referencenet, | |
| ip_adapter_image_proj=ip_adapter_image_proj, | |
| vision_clip_extractor=vision_clip_extractor, | |
| facein_image_proj=facein_image_proj, | |
| face_emb_extractor=face_emb_extractor, | |
| vae_model=test_model_vae_model_path, | |
| ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor, | |
| ip_adapter_face_image_proj=ip_adapter_face_image_proj, | |
| ) | |
| if not use_v2v_predictor | |
| else video_sd_predictor | |
| ) | |
| if use_v2v_predictor: | |
| print( | |
| "text2video use video_sd_predictor, sd_predictor type is ", | |
| type(sd_predictor), | |
| ) | |
| logger.debug(f"load sd_predictor"), | |
| # TODO:这里修改为gradio | |
| import cuid | |
| def generate_cuid(): | |
| return cuid.cuid() | |
| def online_t2v_inference( | |
| prompt, | |
| image_np, | |
| seed, | |
| fps, | |
| w, | |
| h, | |
| video_len, | |
| img_edge_ratio: float = 1.0, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| progress(0, desc="Starting...") | |
| # Save the uploaded image to a specified path | |
| if not os.path.exists(CACHE_PATH): | |
| os.makedirs(CACHE_PATH) | |
| image_cuid = generate_cuid() | |
| image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg") | |
| image = Image.fromarray(image_np) | |
| image.save(image_path) | |
| time_size = int(video_len) | |
| test_data = { | |
| "name": image_cuid, | |
| "prompt": prompt, | |
| # 'video_path': None, | |
| "condition_images": image_path, | |
| "refer_image": image_path, | |
| "ipadapter_image": image_path, | |
| "height": h, | |
| "width": w, | |
| "img_length_ratio": img_edge_ratio, | |
| # 'style': 'anime', | |
| # 'sex': 'female' | |
| } | |
| batch = [] | |
| texts = [] | |
| print("\n test_data", test_data, model_name) | |
| test_data_name = test_data.get("name", test_data) | |
| prompt = test_data["prompt"] | |
| prompt = prefix_prompt + prompt + suffix_prompt | |
| prompt_hash = get_signature_of_string(prompt, length=5) | |
| test_data["prompt_hash"] = prompt_hash | |
| test_data_height = test_data.get("height", height) | |
| test_data_width = test_data.get("width", width) | |
| test_data_condition_images_path = test_data.get("condition_images", None) | |
| test_data_condition_images_index = test_data.get("condition_images_index", None) | |
| test_data_redraw_condition_image = test_data.get( | |
| "redraw_condition_image", redraw_condition_image | |
| ) | |
| # read condition_image | |
| if ( | |
| test_data_condition_images_path is not None | |
| and use_condition_image | |
| and ( | |
| isinstance(test_data_condition_images_path, list) | |
| or ( | |
| isinstance(test_data_condition_images_path, str) | |
| and is_image(test_data_condition_images_path) | |
| ) | |
| ) | |
| ): | |
| ( | |
| test_data_condition_images, | |
| test_data_condition_images_name, | |
| ) = read_image_and_name(test_data_condition_images_path) | |
| condition_image_height = test_data_condition_images.shape[3] | |
| condition_image_width = test_data_condition_images.shape[4] | |
| logger.debug( | |
| f"test_data_condition_images use {test_data_condition_images_path}" | |
| ) | |
| else: | |
| test_data_condition_images = None | |
| test_data_condition_images_name = "no" | |
| condition_image_height = None | |
| condition_image_width = None | |
| logger.debug(f"test_data_condition_images is None") | |
| # 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video | |
| if test_data_height in [None, -1]: | |
| test_data_height = condition_image_height | |
| if test_data_width in [None, -1]: | |
| test_data_width = condition_image_width | |
| test_data_img_length_ratio = float( | |
| test_data.get("img_length_ratio", img_length_ratio) | |
| ) | |
| # 为了和video2video保持对齐,使用64而不是8作为宽、高最小粒度 | |
| # test_data_height = int(test_data_height * test_data_img_length_ratio // 8 * 8) | |
| # test_data_width = int(test_data_width * test_data_img_length_ratio // 8 * 8) | |
| test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64) | |
| test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64) | |
| pprint(test_data) | |
| print(f"test_data_height={test_data_height}") | |
| print(f"test_data_width={test_data_width}") | |
| # continue | |
| test_data_style = test_data.get("style", None) | |
| test_data_sex = test_data.get("sex", None) | |
| # 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。 | |
| test_data_motion_speed = float(test_data.get("motion_speed", motion_speed)) | |
| test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise)) | |
| test_data_img_weight = float(test_data.get("img_weight", img_weight)) | |
| logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}") | |
| logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}") | |
| test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path) | |
| test_data_ipadapter_image_path = test_data.get( | |
| "ipadapter_image", ipadapter_image_path | |
| ) | |
| test_data_refer_face_image_path = test_data.get("face_image", face_image_path) | |
| if negprompt_cfg_path is not None: | |
| if "video_negative_prompt" in test_data: | |
| ( | |
| test_data_video_negative_prompt_name, | |
| test_data_video_negative_prompt, | |
| ) = get_negative_prompt( | |
| test_data.get( | |
| "video_negative_prompt", | |
| ), | |
| cfg_path=negprompt_cfg_path, | |
| n=negtive_prompt_length, | |
| ) | |
| else: | |
| test_data_video_negative_prompt_name = video_negative_prompt_name | |
| test_data_video_negative_prompt = video_negative_prompt | |
| if "negative_prompt" in test_data: | |
| ( | |
| test_data_negative_prompt_name, | |
| test_data_negative_prompt, | |
| ) = get_negative_prompt( | |
| test_data.get( | |
| "negative_prompt", | |
| ), | |
| cfg_path=negprompt_cfg_path, | |
| n=negtive_prompt_length, | |
| ) | |
| else: | |
| test_data_negative_prompt_name = negative_prompt_name | |
| test_data_negative_prompt = negative_prompt | |
| else: | |
| test_data_video_negative_prompt = test_data.get( | |
| "video_negative_prompt", video_negative_prompt | |
| ) | |
| test_data_video_negative_prompt_name = test_data_video_negative_prompt[ | |
| :negtive_prompt_length | |
| ] | |
| test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt) | |
| test_data_negative_prompt_name = test_data_negative_prompt[ | |
| :negtive_prompt_length | |
| ] | |
| # 准备 test_data_refer_image | |
| if referencenet is not None: | |
| if test_data_refer_image_path is None: | |
| test_data_refer_image = test_data_condition_images | |
| test_data_refer_image_name = test_data_condition_images_name | |
| logger.debug(f"test_data_refer_image use test_data_condition_images") | |
| else: | |
| test_data_refer_image, test_data_refer_image_name = read_image_and_name( | |
| test_data_refer_image_path | |
| ) | |
| logger.debug(f"test_data_refer_image use {test_data_refer_image_path}") | |
| else: | |
| test_data_refer_image = None | |
| test_data_refer_image_name = "no" | |
| logger.debug(f"test_data_refer_image is None") | |
| # 准备 test_data_ipadapter_image | |
| if vision_clip_extractor is not None: | |
| if test_data_ipadapter_image_path is None: | |
| test_data_ipadapter_image = test_data_condition_images | |
| test_data_ipadapter_image_name = test_data_condition_images_name | |
| logger.debug(f"test_data_ipadapter_image use test_data_condition_images") | |
| else: | |
| ( | |
| test_data_ipadapter_image, | |
| test_data_ipadapter_image_name, | |
| ) = read_image_and_name(test_data_ipadapter_image_path) | |
| logger.debug( | |
| f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}" | |
| ) | |
| else: | |
| test_data_ipadapter_image = None | |
| test_data_ipadapter_image_name = "no" | |
| logger.debug(f"test_data_ipadapter_image is None") | |
| # 准备 test_data_refer_face_image | |
| if facein_image_proj is not None or ip_adapter_face_image_proj is not None: | |
| if test_data_refer_face_image_path is None: | |
| test_data_refer_face_image = test_data_condition_images | |
| test_data_refer_face_image_name = test_data_condition_images_name | |
| logger.debug(f"test_data_refer_face_image use test_data_condition_images") | |
| else: | |
| ( | |
| test_data_refer_face_image, | |
| test_data_refer_face_image_name, | |
| ) = read_image_and_name(test_data_refer_face_image_path) | |
| logger.debug( | |
| f"test_data_refer_face_image use f{test_data_refer_face_image_path}" | |
| ) | |
| else: | |
| test_data_refer_face_image = None | |
| test_data_refer_face_image_name = "no" | |
| logger.debug(f"test_data_refer_face_image is None") | |
| # # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例 | |
| # if ( | |
| # model_sex is not None | |
| # and test_data_sex is not None | |
| # and model_sex != test_data_sex | |
| # ) or ( | |
| # model_style is not None | |
| # and test_data_style is not None | |
| # and model_style != test_data_style | |
| # ): | |
| # print("model doesnt match test_data") | |
| # print("model name: ", model_name) | |
| # print("test_data: ", test_data) | |
| # continue | |
| if add_static_video_prompt: | |
| test_data_video_negative_prompt = "static video, {}".format( | |
| test_data_video_negative_prompt | |
| ) | |
| for i_num in range(n_repeat): | |
| test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed | |
| cpu_generator, gpu_generator = set_all_seed(int(test_data_seed)) | |
| save_file_name = ( | |
| f"m={model_name}_rm={referencenet_model_name}_case={test_data_name}" | |
| f"_w={test_data_width}_h={test_data_height}_t={time_size}_nb={n_batch}" | |
| f"_s={test_data_seed}_p={prompt_hash}" | |
| f"_w={test_data_img_weight}" | |
| f"_ms={test_data_motion_speed}" | |
| f"_s={strength}_g={video_guidance_scale}" | |
| f"_c-i={test_data_condition_images_name[:5]}_r-c={test_data_redraw_condition_image}" | |
| f"_w={test_data_w_ind_noise}_{test_data_video_negative_prompt_name}" | |
| f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}" | |
| ) | |
| save_file_name = clean_str_for_save(save_file_name) | |
| output_path = os.path.join( | |
| output_dir, | |
| f"{save_file_name}.{save_filetype}", | |
| ) | |
| if os.path.exists(output_path) and not overwrite: | |
| print("existed", output_path) | |
| continue | |
| print("output_path", output_path) | |
| out_videos = sd_predictor.run_pipe_text2video( | |
| video_length=time_size, | |
| prompt=prompt, | |
| width=test_data_width, | |
| height=test_data_height, | |
| generator=gpu_generator, | |
| noise_type=noise_type, | |
| negative_prompt=test_data_negative_prompt, | |
| video_negative_prompt=test_data_video_negative_prompt, | |
| max_batch_num=n_batch, | |
| strength=strength, | |
| need_img_based_video_noise=need_img_based_video_noise, | |
| video_num_inference_steps=video_num_inference_steps, | |
| condition_images=test_data_condition_images, | |
| fix_condition_images=fix_condition_images, | |
| video_guidance_scale=video_guidance_scale, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| redraw_condition_image=test_data_redraw_condition_image, | |
| img_weight=test_data_img_weight, | |
| w_ind_noise=test_data_w_ind_noise, | |
| n_vision_condition=n_vision_condition, | |
| motion_speed=test_data_motion_speed, | |
| need_hist_match=need_hist_match, | |
| video_guidance_scale_end=video_guidance_scale_end, | |
| video_guidance_scale_method=video_guidance_scale_method, | |
| vision_condition_latent_index=test_data_condition_images_index, | |
| refer_image=test_data_refer_image, | |
| fixed_refer_image=fixed_refer_image, | |
| redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet, | |
| ip_adapter_image=test_data_ipadapter_image, | |
| refer_face_image=test_data_refer_face_image, | |
| fixed_refer_face_image=fixed_refer_face_image, | |
| facein_scale=facein_scale, | |
| redraw_condition_image_with_facein=redraw_condition_image_with_facein, | |
| ip_adapter_face_scale=ip_adapter_face_scale, | |
| redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face, | |
| fixed_ip_adapter_image=fixed_ip_adapter_image, | |
| ip_adapter_scale=ip_adapter_scale, | |
| redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter, | |
| prompt_only_use_image_prompt=prompt_only_use_image_prompt, | |
| # need_redraw=need_redraw, | |
| # use_video_redraw=use_video_redraw, | |
| # serial_denoise parameter start | |
| record_mid_video_noises=record_mid_video_noises, | |
| record_mid_video_latents=record_mid_video_latents, | |
| video_overlap=video_overlap, | |
| # serial_denoise parameter end | |
| # parallel_denoise parameter start | |
| context_schedule=context_schedule, | |
| context_frames=context_frames, | |
| context_stride=context_stride, | |
| context_overlap=context_overlap, | |
| context_batch_size=context_batch_size, | |
| interpolation_factor=interpolation_factor, | |
| # parallel_denoise parameter end | |
| ) | |
| out = np.concatenate([out_videos], axis=0) | |
| texts = ["out"] | |
| save_videos_grid_with_opencv( | |
| out, | |
| output_path, | |
| texts=texts, | |
| fps=fps, | |
| tensor_order="b c t h w", | |
| n_cols=n_cols, | |
| write_info=args.write_info, | |
| save_filetype=save_filetype, | |
| save_images=save_images, | |
| ) | |
| print("Save to", output_path) | |
| print("\n" * 2) | |
| return output_path | |