Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from transformers import pipeline
|
5 |
+
import streamlit as st
|
6 |
+
import requests
|
7 |
+
|
8 |
+
def get_story(image_path):
|
9 |
+
model_name = st.selectbox('Select the Model', ['alpaca-lora', 'flan-t5-base'])
|
10 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
11 |
+
caption = image_to_text(image_path)
|
12 |
+
caption = caption[0]['generated_text']
|
13 |
+
st.write(f"Generated Caption: {caption}")
|
14 |
+
input_string = f"""Question: Generate 100 words story on this text
|
15 |
+
'{caption}' Answer:"""
|
16 |
+
if model_name == 'flan-t5-base':
|
17 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
18 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", load_in_8bit=True)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
20 |
+
inputs = tokenizer(input_string, return_tensors="pt").input_ids.to("cpu")
|
21 |
+
outputs = model.generate(inputs, max_length=1000)
|
22 |
+
outputs = tokenizer.decode(outputs[0])
|
23 |
+
else:
|
24 |
+
|
25 |
+
response = requests.post("https://tloen-alpaca-lora.hf.space/run/predict", json={
|
26 |
+
"data": [
|
27 |
+
"Write a story about this image caption",
|
28 |
+
caption,
|
29 |
+
0.1,
|
30 |
+
0.75,
|
31 |
+
40,
|
32 |
+
4,
|
33 |
+
128,
|
34 |
+
]
|
35 |
+
}).json()
|
36 |
+
|
37 |
+
data = response["data"]
|
38 |
+
outputs = data[0]
|
39 |
+
return outputs
|