|
|
|
|
|
import functools |
|
import os |
|
import pathlib |
|
|
|
import cv2 |
|
import dlib |
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import pretrainedmodels |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)' |
|
|
|
|
|
def get_model(model_name='se_resnext50_32x4d', |
|
num_classes=101, |
|
pretrained='imagenet'): |
|
model = pretrainedmodels.__dict__[model_name](pretrained=pretrained) |
|
dim_feats = model.last_linear.in_features |
|
model.last_linear = nn.Linear(dim_feats, num_classes) |
|
model.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
return model |
|
|
|
|
|
def load_model(device): |
|
model = get_model(model_name='se_resnext50_32x4d', pretrained=None) |
|
path = huggingface_hub.hf_hub_download( |
|
'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth') |
|
model.load_state_dict(torch.load(path)) |
|
model = model.to(device) |
|
model.eval() |
|
return model |
|
|
|
|
|
def load_image(path): |
|
image = cv2.imread(path) |
|
h_orig, w_orig = image.shape[:2] |
|
size = max(h_orig, w_orig) |
|
scale = 640 / size |
|
w, h = int(w_orig * scale), int(h_orig * scale) |
|
image = cv2.imread(path) |
|
return image |
|
|
|
|
|
def draw_label(image, |
|
point, |
|
label, |
|
font=cv2.FONT_HERSHEY_SIMPLEX, |
|
font_scale=0.8, |
|
thickness=1): |
|
size = cv2.getTextSize(label, font, font_scale, thickness)[0] |
|
x, y = point |
|
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), |
|
cv2.FILLED) |
|
cv2.putText(image, |
|
label, |
|
point, |
|
font, |
|
font_scale, (255, 255, 255), |
|
thickness, |
|
lineType=cv2.LINE_AA) |
|
|
|
|
|
@torch.inference_mode() |
|
def predict(image_path, model, face_detector, device, margin=0.4, input_size=224): |
|
image = load_image(image_path) |
|
image_h, image_w = image.shape[:2] |
|
|
|
|
|
detected = face_detector(image, 3) |
|
faces = np.empty((len(detected), input_size, input_size, 3)) |
|
age_data = [] |
|
|
|
if len(detected) > 0: |
|
for i, d in enumerate(detected): |
|
x1, y1, x2, y2, w, h = d.left(), d.top( |
|
), d.right() + 1, d.bottom() + 1, d.width(), d.height() |
|
xw1 = max(int(x1 - margin * w), 0) |
|
yw1 = max(int(y1 - margin * h), 0) |
|
xw2 = min(int(x2 + margin * w), image_w - 1) |
|
yw2 = min(int(y2 + margin * h), image_h - 1) |
|
faces[i] = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1], |
|
(input_size, input_size)) |
|
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2) |
|
cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2) |
|
|
|
|
|
inputs = torch.from_numpy( |
|
np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device) |
|
outputs = F.softmax(model(inputs), dim=-1).cpu().numpy() |
|
ages = np.arange(0, 101) |
|
predicted_ages = (outputs * ages).sum(axis=-1) |
|
|
|
|
|
for age, d in zip(predicted_ages, detected): |
|
age_text = f'{int(age)}' |
|
age_data.append({'age': int(age), 'text': age_text, 'face_coordinates': (d.left(), d.top())}) |
|
return age_data |
|
|
|
|
|
def main(): |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
model = load_model(device) |
|
face_detector = dlib.get_frontal_face_detector() |
|
fn = functools.partial(predict, model=model, face_detector=face_detector, device=device) |
|
|
|
image_dir = pathlib.Path('sample_images') |
|
examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))] |
|
|
|
demo = gr.Interface( |
|
fn=fn, |
|
inputs=gr.inputs.Image(type="filepath"), |
|
outputs="json", |
|
examples=examples, |
|
title="Age Estimation", |
|
description=DESCRIPTION, |
|
cache_examples=os.getenv('CACHE_EXAMPLES') == '1' |
|
) |
|
|
|
demo.launch() |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|