Spaces:
Runtime error
Runtime error
bug fixes, faster ocr and restructure
Browse files- app.py +125 -158
- requirements.txt +4 -1
- utils.py +53 -0
app.py
CHANGED
@@ -1,23 +1,23 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from unstructured.partition.pdf import partition_pdf
|
3 |
-
import pymupdf
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
import io
|
|
|
|
|
|
|
7 |
import pandas as pd
|
8 |
-
|
9 |
-
import gc
|
10 |
import torch
|
11 |
-
import
|
12 |
-
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
13 |
-
from chromadb.utils.data_loaders import ImageLoader
|
14 |
-
from sentence_transformers import SentenceTransformer
|
15 |
from chromadb.utils import embedding_functions
|
16 |
-
from
|
17 |
-
import base64
|
18 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
19 |
from langchain import PromptTemplate
|
20 |
-
import
|
|
|
|
|
|
|
|
|
21 |
|
22 |
if torch.cuda.is_available():
|
23 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
@@ -29,24 +29,17 @@ if torch.cuda.is_available():
|
|
29 |
)
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
image.save(img_byte_arr, format="PNG")
|
35 |
-
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
36 |
-
|
37 |
-
|
38 |
-
@spaces.GPU(duration=60*4)
|
39 |
-
def get_image_descriptions(images):
|
40 |
torch.cuda.empty_cache()
|
41 |
gc.collect()
|
42 |
|
43 |
descriptions = []
|
44 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
|
50 |
return descriptions
|
51 |
|
52 |
|
@@ -55,39 +48,6 @@ CSS = """
|
|
55 |
"""
|
56 |
|
57 |
|
58 |
-
def extract_pdfs(docs, doc_collection):
|
59 |
-
if docs:
|
60 |
-
doc_collection = []
|
61 |
-
doc_collection.extend(docs)
|
62 |
-
return (
|
63 |
-
doc_collection,
|
64 |
-
gr.Tabs(selected=1),
|
65 |
-
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
-
def extract_images(docs):
|
70 |
-
images = []
|
71 |
-
for doc_path in docs:
|
72 |
-
doc = pymupdf.open(doc_path) # open a document
|
73 |
-
|
74 |
-
for page_index in range(len(doc)): # iterate over pdf pages
|
75 |
-
page = doc[page_index] # get the page
|
76 |
-
image_list = page.get_images()
|
77 |
-
|
78 |
-
for image_index, img in enumerate(
|
79 |
-
image_list, start=1
|
80 |
-
): # enumerate the image list
|
81 |
-
xref = img[0] # get the XREF of the image
|
82 |
-
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
|
83 |
-
|
84 |
-
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
|
85 |
-
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
|
86 |
-
|
87 |
-
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
|
88 |
-
return images
|
89 |
-
|
90 |
-
|
91 |
# def get_vectordb(text, images, tables):
|
92 |
def get_vectordb(text, images):
|
93 |
client = chromadb.EphemeralClient()
|
@@ -99,7 +59,7 @@ def get_vectordb(text, images):
|
|
99 |
client.delete_collection("text_db")
|
100 |
if "image_db" in [i.name for i in client.list_collections()]:
|
101 |
client.delete_collection("image_db")
|
102 |
-
|
103 |
text_collection = client.get_or_create_collection(
|
104 |
name="text_db",
|
105 |
embedding_function=sentence_transformer_ef,
|
@@ -111,14 +71,21 @@ def get_vectordb(text, images):
|
|
111 |
data_loader=loader,
|
112 |
metadata={"hnsw:space": "cosine"},
|
113 |
)
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
image_collection.add(
|
120 |
ids=[str(i) for i in range(len(images))],
|
121 |
-
documents=
|
122 |
metadatas=image_dict,
|
123 |
)
|
124 |
|
@@ -127,7 +94,7 @@ def get_vectordb(text, images):
|
|
127 |
chunk_overlap=10,
|
128 |
)
|
129 |
|
130 |
-
if len(text)>0:
|
131 |
docs = splitter.create_documents([text])
|
132 |
doc_texts = [i.page_content for i in docs]
|
133 |
text_collection.add(
|
@@ -136,54 +103,31 @@ def get_vectordb(text, images):
|
|
136 |
return client
|
137 |
|
138 |
|
139 |
-
def extract_data_from_pdfs(docs, session, progress=gr.Progress()):
|
140 |
if len(docs) == 0:
|
141 |
raise gr.Error("No documents to process")
|
142 |
progress(0, "Extracting Images")
|
143 |
|
144 |
-
images = extract_images(docs)
|
145 |
|
146 |
progress(0.25, "Extracting Text")
|
147 |
|
148 |
strategy = "hi_res"
|
149 |
model_name = "yolox"
|
150 |
all_elements = []
|
151 |
-
|
152 |
-
for doc in docs:
|
153 |
-
elements = partition_pdf(
|
154 |
-
filename=doc,
|
155 |
-
strategy=strategy,
|
156 |
-
infer_table_structure=True,
|
157 |
-
model_name=model_name,
|
158 |
-
)
|
159 |
-
|
160 |
-
all_elements.extend(elements)
|
161 |
-
|
162 |
all_text = ""
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
if
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
continue
|
176 |
-
# tables.append(meta["metadata"]["text_as_html"])
|
177 |
-
|
178 |
-
# html = "<br>".join(tables)
|
179 |
-
# display = "<h3>Sample Tables</h3>" + "<br>".join(tables[:2])
|
180 |
-
# html = gr.HTML(html)
|
181 |
-
# vectordb = get_vectordb(all_text, images, tables)
|
182 |
-
|
183 |
-
progress(0.5, "Generating image descriptions")
|
184 |
-
image_descriptions = "\n".join(get_image_descriptions(images))
|
185 |
-
|
186 |
-
progress(0.75, "Inserting data into vector database")
|
187 |
vectordb = get_vectordb(all_text, images)
|
188 |
|
189 |
progress(1, "Completed")
|
@@ -205,7 +149,23 @@ sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFuncti
|
|
205 |
)
|
206 |
|
207 |
|
208 |
-
def conversation(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
text_collection = vectordb_client.get_collection(
|
211 |
"text_db", embedding_function=sentence_transformer_ef
|
@@ -217,8 +177,6 @@ def conversation(vectordb_client, msg, num_context, img_context, history):
|
|
217 |
results = text_collection.query(
|
218 |
query_texts=[msg], include=["documents"], n_results=num_context
|
219 |
)["documents"][0]
|
220 |
-
# print(results)
|
221 |
-
# print("R"*100)
|
222 |
similar_images = image_collection.query(
|
223 |
query_texts=[msg],
|
224 |
include=["metadatas", "distances", "documents"],
|
@@ -266,19 +224,12 @@ def get_stats(vectordb):
|
|
266 |
return "\n".join(text_data), "", ""
|
267 |
|
268 |
|
269 |
-
|
270 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
271 |
-
temperature=0.4,
|
272 |
-
max_new_tokens=800,
|
273 |
-
)
|
274 |
-
|
275 |
-
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
276 |
-
|
277 |
vectordb = gr.State()
|
278 |
doc_collection = gr.State(value=[])
|
279 |
session_states = gr.State(value={})
|
280 |
references = gr.State(value=[])
|
281 |
-
|
282 |
gr.Markdown(
|
283 |
"""<h2><center>Multimodal PDF Chatbot</center></h2>
|
284 |
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
|
@@ -312,18 +263,23 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
312 |
embed = gr.Button(value="Extract Data")
|
313 |
with gr.Column():
|
314 |
next_p1 = gr.Button(value="Next")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
with gr.Row() as row:
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
|
326 |
-
)
|
327 |
|
328 |
with gr.Accordion("See Parts of Extracted Data", open=False):
|
329 |
with gr.Column(visible=True) as sample_data:
|
@@ -337,32 +293,37 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
337 |
label="Sample Extracted Images", columns=1, rows=2
|
338 |
)
|
339 |
|
340 |
-
|
341 |
-
|
342 |
with gr.TabItem("Chat", id=2) as chat_tab:
|
343 |
-
with gr.
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
with gr.Row():
|
367 |
with gr.Column():
|
368 |
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
|
@@ -370,14 +331,15 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
370 |
chatbot = gr.Chatbot(height=400)
|
371 |
with gr.Accordion("Text References", open=False):
|
372 |
# text_context = gr.Row()
|
373 |
-
|
374 |
@gr.render(inputs=references)
|
375 |
def gen_refs(references):
|
376 |
# print(references)
|
377 |
n = len(references)
|
378 |
for i in range(n):
|
379 |
-
gr.Textbox(
|
380 |
-
|
|
|
381 |
|
382 |
with gr.Row():
|
383 |
msg = gr.Textbox(
|
@@ -396,7 +358,7 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
396 |
)
|
397 |
embed.click(
|
398 |
extract_data_from_pdfs,
|
399 |
-
inputs=[doc_collection, session_states],
|
400 |
outputs=[
|
401 |
vectordb,
|
402 |
session_states,
|
@@ -409,13 +371,18 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
409 |
|
410 |
submit_btn.click(
|
411 |
conversation,
|
412 |
-
[vectordb, msg, num_context, img_context, chatbot],
|
413 |
-
[chatbot,references
|
414 |
)
|
415 |
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
|
418 |
|
419 |
next_p1.click(check_validity_and_llm, session_states, tabs)
|
420 |
if __name__ == "__main__":
|
421 |
-
demo.launch()
|
|
|
1 |
+
import base64
|
2 |
+
import chromadb
|
3 |
+
import gc
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
import io
|
6 |
+
import numpy as np
|
7 |
+
import ocrmypdf
|
8 |
+
import os
|
9 |
import pandas as pd
|
10 |
+
import pymupdf
|
|
|
11 |
import torch
|
12 |
+
from PIL import Image
|
|
|
|
|
|
|
13 |
from chromadb.utils import embedding_functions
|
14 |
+
from chromadb.utils.data_loaders import ImageLoader
|
|
|
|
|
15 |
from langchain import PromptTemplate
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
18 |
+
from pdfminer.high_level import extract_text
|
19 |
+
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor
|
20 |
+
from utils import *
|
21 |
|
22 |
if torch.cuda.is_available():
|
23 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
|
|
29 |
)
|
30 |
|
31 |
|
32 |
+
@spaces.GPU()
|
33 |
+
def get_image_description(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
torch.cuda.empty_cache()
|
35 |
gc.collect()
|
36 |
|
37 |
descriptions = []
|
38 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
39 |
|
40 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
41 |
+
output = vision_model.generate(**inputs, max_new_tokens=100)
|
42 |
+
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
|
|
|
43 |
return descriptions
|
44 |
|
45 |
|
|
|
48 |
"""
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# def get_vectordb(text, images, tables):
|
52 |
def get_vectordb(text, images):
|
53 |
client = chromadb.EphemeralClient()
|
|
|
59 |
client.delete_collection("text_db")
|
60 |
if "image_db" in [i.name for i in client.list_collections()]:
|
61 |
client.delete_collection("image_db")
|
62 |
+
|
63 |
text_collection = client.get_or_create_collection(
|
64 |
name="text_db",
|
65 |
embedding_function=sentence_transformer_ef,
|
|
|
71 |
data_loader=loader,
|
72 |
metadata={"hnsw:space": "cosine"},
|
73 |
)
|
74 |
+
descs = []
|
75 |
+
print(descs)
|
76 |
+
for image in images:
|
77 |
+
try:
|
78 |
+
descs.append(get_image_description(image)[0])
|
79 |
+
except:
|
80 |
+
descs.append("Could not generate image description due to some error")
|
81 |
+
|
82 |
+
# image_descriptions = get_image_descriptions(images)
|
83 |
+
image_dict = [{"image": image_to_bytes(img)} for img in images]
|
84 |
+
|
85 |
+
if len(images) > 0:
|
86 |
image_collection.add(
|
87 |
ids=[str(i) for i in range(len(images))],
|
88 |
+
documents=descs,
|
89 |
metadatas=image_dict,
|
90 |
)
|
91 |
|
|
|
94 |
chunk_overlap=10,
|
95 |
)
|
96 |
|
97 |
+
if len(text) > 0:
|
98 |
docs = splitter.create_documents([text])
|
99 |
doc_texts = [i.page_content for i in docs]
|
100 |
text_collection.add(
|
|
|
103 |
return client
|
104 |
|
105 |
|
106 |
+
def extract_data_from_pdfs(docs, session, include_images, progress=gr.Progress()):
|
107 |
if len(docs) == 0:
|
108 |
raise gr.Error("No documents to process")
|
109 |
progress(0, "Extracting Images")
|
110 |
|
111 |
+
# images = extract_images(docs)
|
112 |
|
113 |
progress(0.25, "Extracting Text")
|
114 |
|
115 |
strategy = "hi_res"
|
116 |
model_name = "yolox"
|
117 |
all_elements = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
all_text = ""
|
119 |
|
120 |
+
images = []
|
121 |
+
for doc in docs:
|
122 |
+
ocrmypdf.ocr(doc, "ocr.pdf", deskew=True, skip_text=True)
|
123 |
+
text = extract_text("ocr.pdf")
|
124 |
+
all_text += clean_text(text) + "\n\n"
|
125 |
+
if include_images == "Include Images":
|
126 |
+
images.extend(extract_images(["ocr.pdf"]))
|
127 |
+
|
128 |
+
progress(
|
129 |
+
0.6, "Generating image descriptions and inserting everything into vectorDB"
|
130 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
vectordb = get_vectordb(all_text, images)
|
132 |
|
133 |
progress(1, "Completed")
|
|
|
149 |
)
|
150 |
|
151 |
|
152 |
+
def conversation(
|
153 |
+
vectordb_client, msg, num_context, img_context, history, hf_token, model_path
|
154 |
+
):
|
155 |
+
if hf_token.strip() != "" and model_path.strip() != "":
|
156 |
+
llm = HuggingFaceEndpoint(
|
157 |
+
repo_id=model_path,
|
158 |
+
temperature=0.4,
|
159 |
+
max_new_tokens=800,
|
160 |
+
huggingfacehub_api_token=hf_token,
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
llm = HuggingFaceEndpoint(
|
164 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
165 |
+
temperature=0.4,
|
166 |
+
max_new_tokens=800,
|
167 |
+
huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
|
168 |
+
)
|
169 |
|
170 |
text_collection = vectordb_client.get_collection(
|
171 |
"text_db", embedding_function=sentence_transformer_ef
|
|
|
177 |
results = text_collection.query(
|
178 |
query_texts=[msg], include=["documents"], n_results=num_context
|
179 |
)["documents"][0]
|
|
|
|
|
180 |
similar_images = image_collection.query(
|
181 |
query_texts=[msg],
|
182 |
include=["metadatas", "distances", "documents"],
|
|
|
224 |
return "\n".join(text_data), "", ""
|
225 |
|
226 |
|
227 |
+
with gr.Blocks(css=CSS, theme=gr.themes.Soft(text_size=sizes.text_md)) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
vectordb = gr.State()
|
229 |
doc_collection = gr.State(value=[])
|
230 |
session_states = gr.State(value={})
|
231 |
references = gr.State(value=[])
|
232 |
+
|
233 |
gr.Markdown(
|
234 |
"""<h2><center>Multimodal PDF Chatbot</center></h2>
|
235 |
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
|
|
|
263 |
embed = gr.Button(value="Extract Data")
|
264 |
with gr.Column():
|
265 |
next_p1 = gr.Button(value="Next")
|
266 |
+
with gr.Row():
|
267 |
+
include_images = gr.Radio(
|
268 |
+
["Include Images", "Exclude Images"],
|
269 |
+
value="Include Images",
|
270 |
+
label="Include/ Exclude Images",
|
271 |
+
interactive=True,
|
272 |
+
)
|
273 |
|
274 |
+
with gr.Row(equal_height=True, variant="panel") as row:
|
275 |
+
selected = gr.Dataframe(
|
276 |
+
interactive=False,
|
277 |
+
col_count=(1, "fixed"),
|
278 |
+
headers=["Selected Files"],
|
279 |
+
)
|
280 |
+
prog = gr.HTML(
|
281 |
+
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
|
282 |
+
)
|
|
|
|
|
283 |
|
284 |
with gr.Accordion("See Parts of Extracted Data", open=False):
|
285 |
with gr.Column(visible=True) as sample_data:
|
|
|
293 |
label="Sample Extracted Images", columns=1, rows=2
|
294 |
)
|
295 |
|
|
|
|
|
296 |
with gr.TabItem("Chat", id=2) as chat_tab:
|
297 |
+
with gr.Accordion("Config (Advanced) (Optional)", open=False):
|
298 |
+
with gr.Row(variant="panel", equal_height=True):
|
299 |
+
choice = gr.Radio(
|
300 |
+
["chromaDB"],
|
301 |
+
value="chromaDB",
|
302 |
+
label="Vector Database",
|
303 |
+
interactive=True,
|
304 |
+
)
|
305 |
+
with gr.Accordion("Use your own model (optional)", open=False):
|
306 |
+
hf_token = gr.Textbox(
|
307 |
+
label="HuggingFace Token", interactive=True
|
308 |
+
)
|
309 |
+
model_path = gr.Textbox(label="Model Path", interactive=True)
|
310 |
+
with gr.Row(variant="panel", equal_height=True):
|
311 |
+
num_context = gr.Slider(
|
312 |
+
label="Number of text context elements",
|
313 |
+
minimum=1,
|
314 |
+
maximum=20,
|
315 |
+
step=1,
|
316 |
+
interactive=True,
|
317 |
+
value=3,
|
318 |
+
)
|
319 |
+
img_context = gr.Slider(
|
320 |
+
label="Number of image context elements",
|
321 |
+
minimum=1,
|
322 |
+
maximum=10,
|
323 |
+
step=1,
|
324 |
+
interactive=True,
|
325 |
+
value=2,
|
326 |
+
)
|
327 |
with gr.Row():
|
328 |
with gr.Column():
|
329 |
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
|
|
|
331 |
chatbot = gr.Chatbot(height=400)
|
332 |
with gr.Accordion("Text References", open=False):
|
333 |
# text_context = gr.Row()
|
334 |
+
|
335 |
@gr.render(inputs=references)
|
336 |
def gen_refs(references):
|
337 |
# print(references)
|
338 |
n = len(references)
|
339 |
for i in range(n):
|
340 |
+
gr.Textbox(
|
341 |
+
label=f"Reference-{i+1}", value=references[i], lines=3
|
342 |
+
)
|
343 |
|
344 |
with gr.Row():
|
345 |
msg = gr.Textbox(
|
|
|
358 |
)
|
359 |
embed.click(
|
360 |
extract_data_from_pdfs,
|
361 |
+
inputs=[doc_collection, session_states, include_images],
|
362 |
outputs=[
|
363 |
vectordb,
|
364 |
session_states,
|
|
|
371 |
|
372 |
submit_btn.click(
|
373 |
conversation,
|
374 |
+
[vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
|
375 |
+
[chatbot, references, ret_images],
|
376 |
)
|
377 |
|
378 |
+
msg.submit(
|
379 |
+
conversation,
|
380 |
+
[vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
|
381 |
+
[chatbot, references, ret_images],
|
382 |
+
)
|
383 |
|
384 |
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
|
385 |
|
386 |
next_p1.click(check_validity_and_llm, session_states, tabs)
|
387 |
if __name__ == "__main__":
|
388 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
chromadb==0.5.3
|
2 |
langchain==0.2.5
|
3 |
langchain_community==0.2.5
|
|
|
4 |
numpy<2.0.0
|
5 |
pandas==2.2.2
|
6 |
Pillow==10.3.0
|
@@ -8,4 +9,6 @@ pymupdf==1.24.5
|
|
8 |
sentence_transformers==3.0.1
|
9 |
unstructured[all-docs]
|
10 |
accelerate
|
11 |
-
bitsandbytes
|
|
|
|
|
|
1 |
chromadb==0.5.3
|
2 |
langchain==0.2.5
|
3 |
langchain_community==0.2.5
|
4 |
+
langchain-huggingface
|
5 |
numpy<2.0.0
|
6 |
pandas==2.2.2
|
7 |
Pillow==10.3.0
|
|
|
9 |
sentence_transformers==3.0.1
|
10 |
unstructured[all-docs]
|
11 |
accelerate
|
12 |
+
bitsandbytes
|
13 |
+
easyocr
|
14 |
+
ocrmypdf
|
utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pymupdf
|
2 |
+
from PIL import Image
|
3 |
+
import io
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
def image_to_bytes(image):
|
9 |
+
img_byte_arr = io.BytesIO()
|
10 |
+
image.save(img_byte_arr, format="PNG")
|
11 |
+
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
12 |
+
|
13 |
+
|
14 |
+
def extract_pdfs(docs, doc_collection):
|
15 |
+
if docs:
|
16 |
+
doc_collection = []
|
17 |
+
doc_collection.extend(docs)
|
18 |
+
return (
|
19 |
+
doc_collection,
|
20 |
+
gr.Tabs(selected=1),
|
21 |
+
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def extract_images(docs):
|
26 |
+
images = []
|
27 |
+
for doc_path in docs:
|
28 |
+
doc = pymupdf.open(doc_path) # open a document
|
29 |
+
|
30 |
+
for page_index in range(len(doc)): # iterate over pdf pages
|
31 |
+
page = doc[page_index] # get the page
|
32 |
+
image_list = page.get_images()
|
33 |
+
|
34 |
+
for image_index, img in enumerate(
|
35 |
+
image_list, start=1
|
36 |
+
): # enumerate the image list
|
37 |
+
xref = img[0] # get the XREF of the image
|
38 |
+
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
|
39 |
+
|
40 |
+
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
|
41 |
+
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
|
42 |
+
|
43 |
+
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
|
44 |
+
return images
|
45 |
+
|
46 |
+
|
47 |
+
def clean_text(text):
|
48 |
+
text = text.strip()
|
49 |
+
cleaned_text = text.replace("\n", " ")
|
50 |
+
cleaned_text = cleaned_text.replace("\t", " ")
|
51 |
+
cleaned_text = cleaned_text.replace(" ", " ")
|
52 |
+
cleaned_text = cleaned_text.strip()
|
53 |
+
return cleaned_text
|