anand004's picture
dynamic references gradio
17672b0 verified
raw
history blame
13.6 kB
import gradio as gr
from unstructured.partition.pdf import partition_pdf
import pymupdf
from PIL import Image
import numpy as np
import io
import pandas as pd
from langchain.text_splitter import RecursiveCharacterTextSplitter
import gc
import torch
import chromadb
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader
from sentence_transformers import SentenceTransformer
from chromadb.utils import embedding_functions
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import base64
from langchain_community.llms import HuggingFaceEndpoint
from langchain import PromptTemplate
import spaces
if torch.cuda.is_available():
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_4bit=True,
)
def image_to_bytes(image):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
@spaces.GPU(duration=60*4)
def get_image_descriptions(images):
torch.cuda.empty_cache()
gc.collect()
descriptions = []
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
for img in images:
inputs = processor(prompt, img, return_tensors="pt").to("cuda:0")
output = vision_model.generate(**inputs, max_new_tokens=100)
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
return descriptions
CSS = """
#table_col {background-color: rgb(33, 41, 54);}
"""
def extract_pdfs(docs, doc_collection):
if docs:
doc_collection = []
doc_collection.extend(docs)
return (
doc_collection,
gr.Tabs(selected=1),
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
)
def extract_images(docs):
images = []
for doc_path in docs:
doc = pymupdf.open(doc_path) # open a document
for page_index in range(len(doc)): # iterate over pdf pages
page = doc[page_index] # get the page
image_list = page.get_images()
for image_index, img in enumerate(
image_list, start=1
): # enumerate the image list
xref = img[0] # get the XREF of the image
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
return images
# def get_vectordb(text, images, tables):
def get_vectordb(text, images):
client = chromadb.EphemeralClient()
loader = ImageLoader()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="multi-qa-mpnet-base-dot-v1"
)
if "text_db" in [i.name for i in client.list_collections()]:
client.delete_collection("text_db")
if "image_db" in [i.name for i in client.list_collections()]:
client.delete_collection("image_db")
text_collection = client.get_or_create_collection(
name="text_db",
embedding_function=sentence_transformer_ef,
data_loader=loader,
)
image_collection = client.get_or_create_collection(
name="image_db",
embedding_function=sentence_transformer_ef,
data_loader=loader,
metadata={"hnsw:space": "cosine"},
)
image_descriptions = get_image_descriptions(images)
image_dict = [{"image": image_to_bytes(img) for img in images}]
image_collection.add(
ids=[str(i) for i in range(len(images))],
documents=image_descriptions,
metadatas=image_dict,
)
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=10,
)
docs = splitter.create_documents([text])
doc_texts = [i.page_content for i in docs]
text_collection.add(
ids=[str(i) for i in list(range(len(doc_texts)))], documents=doc_texts
)
return client
def extract_data_from_pdfs(docs, session, progress=gr.Progress()):
if len(docs) == 0:
raise gr.Error("No documents to process")
progress(0, "Extracting Images")
images = extract_images(docs)
progress(0.25, "Extracting Text")
strategy = "hi_res"
model_name = "yolox"
all_elements = []
for doc in docs:
elements = partition_pdf(
filename=doc,
strategy=strategy,
infer_table_structure=True,
model_name=model_name,
)
all_elements.extend(elements)
all_text = ""
# tables = []
prev = None
for i in all_elements:
meta = i.to_dict()
if meta["type"].lower() not in ["table", "figurecaption"]:
if meta["type"].lower() in ["listitem", "title"]:
all_text += "\n\n" + meta["text"] + "\n"
else:
all_text += meta["text"]
elif meta["type"] == "Table":
continue
# tables.append(meta["metadata"]["text_as_html"])
# html = "<br>".join(tables)
# display = "<h3>Sample Tables</h3>" + "<br>".join(tables[:2])
# html = gr.HTML(html)
# vectordb = get_vectordb(all_text, images, tables)
progress(0.5, "Generating image descriptions")
image_descriptions = "\n".join(get_image_descriptions(images))
progress(0.75, "Inserting data into vector database")
vectordb = get_vectordb(all_text, images)
progress(1, "Completed")
session["processed"] = True
return (
vectordb,
session,
gr.Row(visible=True),
all_text[:2000] + "...",
# display,
images[:2],
"<h1 style='text-align: center'>Completed<h1>",
# image_descriptions
)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="multi-qa-mpnet-base-dot-v1"
)
def conversation(vectordb_client, msg, num_context, img_context, history):
text_collection = vectordb_client.get_collection(
"text_db", embedding_function=sentence_transformer_ef
)
image_collection = vectordb_client.get_collection(
"image_db", embedding_function=sentence_transformer_ef
)
results = text_collection.query(
query_texts=[msg], include=["documents"], n_results=num_context
)["documents"][0]
similar_images = image_collection.query(
query_texts=[msg],
include=["metadatas", "distances", "documents"],
n_results=img_context,
)
img_links = [i["image"] for i in similar_images["metadatas"][0]]
images_and_locs = [
Image.open(io.BytesIO(base64.b64decode(i[1])))
for i in zip(similar_images["distances"][0], img_links)
]
img_desc = "\n".join(similar_images["documents"][0])
if len(img_links) == 0:
img_desc = "No Images Are Provided"
template = """
Context:
{context}
Included Images:
{images}
Question:
{question}
Answer:
"""
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
context = "\n\n".join(results)
# references = [gr.Textbox(i, visible=True, interactive=False) for i in results]
response = llm(prompt.format(context=context, question=msg, images=img_desc))
return history + [(msg, response)], results, images_and_locs
def check_validity_and_llm(session_states):
if session_states.get("processed", False) == True:
return gr.Tabs(selected=2)
raise gr.Error("Please extract data first")
def get_stats(vectordb):
eles = vectordb.get()
# words =
text_data = [f"Chunks: {len(eles)}", "HIII"]
return "\n".join(text_data), "", ""
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.4,
max_new_tokens=800,
)
with gr.Blocks(css=CSS) as demo:
vectordb = gr.State()
doc_collection = gr.State(value=[])
session_states = gr.State(value={})
references = gr.State(value=[])
gr.Markdown(
"""<h2><center>Multimodal PDF Chatbot</center></h2>
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
)
gr.Markdown(
"""<center><h3><b>Note: </b> This application leverages advanced Retrieval-Augmented Generation (RAG) techniques to provide context-aware responses from your PDF documents</center><h3><br>
<center>Utilizing multimodal capabilities, this chatbot can interpret and answer queries based on both textual and visual information within your PDFs.</center>"""
)
gr.Markdown(
"""
<center><b>Warning: </b> Extracting text and images from your document and generating embeddings may take some time due to the use of OCR and multimodal LLMs for image description<center>
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("Upload PDFs", id=0) as pdf_tab:
with gr.Row():
with gr.Column():
documents = gr.File(
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload your PDF file/s",
)
pdf_btn = gr.Button(value="Next", elem_id="button1")
with gr.TabItem("Extract Data", id=1) as preprocess:
with gr.Row():
with gr.Column():
back_p1 = gr.Button(value="Back")
with gr.Column():
embed = gr.Button(value="Extract Data")
with gr.Column():
next_p1 = gr.Button(value="Next")
with gr.Row() as row:
with gr.Column():
selected = gr.Dataframe(
interactive=False,
col_count=(1, "fixed"),
headers=["Selected Files"],
)
with gr.Column(variant="panel"):
prog = gr.HTML(
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
)
with gr.Accordion("See Parts of Extracted Data", open=False):
with gr.Column(visible=True) as sample_data:
with gr.Row():
with gr.Column():
ext_text = gr.Textbox(
label="Sample Extracted Text", lines=15
)
with gr.Column():
images = gr.Gallery(
label="Sample Extracted Images", columns=1, rows=2
)
with gr.TabItem("Chat", id=2) as chat_tab:
with gr.Column():
choice = gr.Radio(
["chromaDB"],
value="chromaDB",
label="Vector Database",
interactive=True,
)
num_context = gr.Slider(
label="Number of text context elements",
minimum=1,
maximum=20,
step=1,
interactive=True,
value=3,
)
img_context = gr.Slider(
label="Number of image context elements",
minimum=1,
maximum=10,
step=1,
interactive=True,
value=2,
)
with gr.Row():
with gr.Column():
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
with gr.Column():
chatbot = gr.Chatbot(height=400)
with gr.Accordion("Text References", open=False):
# text_context = gr.Row()
@gr.render(inputs=[references])
def gen_refs(refs):
n = len(refs)
for i in range(n):
gr.Textbox(label=f"Ref-{i+1}", value=refs[i], lines=3)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your question here (e.g. 'What is this document about?')",
interactive=True,
container=True,
)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
pdf_btn.click(
fn=extract_pdfs,
inputs=[documents, doc_collection],
outputs=[doc_collection, tabs, selected],
)
embed.click(
extract_data_from_pdfs,
inputs=[doc_collection, session_states],
outputs=[
vectordb,
session_states,
sample_data,
ext_text,
images,
prog,
],
)
submit_btn.click(
conversation,
[vectordb, msg, num_context, img_context, chatbot],
[chatbot, references, ret_images],
)
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
next_p1.click(check_validity_and_llm, session_states, tabs)
if __name__ == "__main__":
demo.launch(share=True)