Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,11 +12,17 @@ try:
|
|
| 12 |
except ImportError:
|
| 13 |
Groq = None
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# -----------------------------
|
| 16 |
# Utility Functions
|
| 17 |
# -----------------------------
|
| 18 |
def load_api_key() -> str:
|
| 19 |
-
"""Load the GROQ API key from Hugging Face
|
| 20 |
api_key = os.environ.get("GROQ_API_KEY")
|
| 21 |
if not api_key:
|
| 22 |
try:
|
|
@@ -68,7 +74,8 @@ def pdf_to_chunks(uploaded_file, chunk_size: int = 500, overlap: int = 50) -> Li
|
|
| 68 |
continue
|
| 69 |
|
| 70 |
words = text.split()
|
| 71 |
-
|
|
|
|
| 72 |
chunk_text = " ".join(words[i:i + chunk_size])
|
| 73 |
if chunk_text.strip():
|
| 74 |
chunks.append({
|
|
@@ -117,11 +124,13 @@ def create_vector_database(chunks: List[Dict], embedding_model: SentenceTransfor
|
|
| 117 |
|
| 118 |
# Store only the collection name (not object) in session_state
|
| 119 |
st.session_state.collection_name = collection_name
|
|
|
|
|
|
|
| 120 |
return collection_name
|
| 121 |
|
| 122 |
|
| 123 |
def query_vector_database(query: str, embedding_model: SentenceTransformer,
|
| 124 |
-
top_k: int =
|
| 125 |
"""Query ChromaDB for relevant chunks."""
|
| 126 |
if "collection_name" not in st.session_state:
|
| 127 |
st.error("No active collection found. Upload and process a PDF first.")
|
|
@@ -163,7 +172,10 @@ def query_vector_database(query: str, embedding_model: SentenceTransformer,
|
|
| 163 |
elif isinstance(distance, (int, float)) and distance <= 1:
|
| 164 |
similarity = max(0, 1 - distance)
|
| 165 |
else:
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
relevant_chunks.append({
|
| 169 |
"text": doc,
|
|
@@ -207,6 +219,7 @@ Answer:"""
|
|
| 207 |
max_tokens=500
|
| 208 |
)
|
| 209 |
else:
|
|
|
|
| 210 |
chat_resp = client.create(prompt=prompt, max_tokens=500)
|
| 211 |
|
| 212 |
if hasattr(chat_resp, "choices"):
|
|
@@ -223,16 +236,17 @@ Answer:"""
|
|
| 223 |
return f"Error generating answer: {e}"
|
| 224 |
|
| 225 |
|
|
|
|
| 226 |
# STREAMLIT UI
|
| 227 |
-
|
| 228 |
def main():
|
| 229 |
"""Main Streamlit application."""
|
| 230 |
|
| 231 |
# Page configuration with wide layout for centered design
|
| 232 |
st.set_page_config(
|
| 233 |
-
page_title="PageMentor",
|
| 234 |
-
page_icon="π",
|
| 235 |
-
layout="wide"
|
| 236 |
)
|
| 237 |
|
| 238 |
# Custom CSS for professional styling and centered layout
|
|
@@ -244,101 +258,18 @@ def main():
|
|
| 244 |
margin: 0 auto;
|
| 245 |
padding: 2rem 1rem;
|
| 246 |
}
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
.
|
| 250 |
-
|
| 251 |
-
}
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
.
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
margin-bottom: 2rem;
|
| 260 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
.header-title {
|
| 264 |
-
color: white;
|
| 265 |
-
font-size: 2.5rem;
|
| 266 |
-
font-weight: 700;
|
| 267 |
-
margin-bottom: 0.5rem;
|
| 268 |
-
}
|
| 269 |
-
|
| 270 |
-
.header-subtitle {
|
| 271 |
-
color: rgba(255, 255, 255, 0.9);
|
| 272 |
-
font-size: 1.1rem;
|
| 273 |
-
}
|
| 274 |
-
|
| 275 |
-
/* Chat bubble style for answers */
|
| 276 |
-
.answer-box {
|
| 277 |
-
background-color: white;
|
| 278 |
-
border-radius: 15px;
|
| 279 |
-
padding: 1.5rem;
|
| 280 |
-
margin: 1rem 0;
|
| 281 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
| 282 |
-
border-left: 4px solid #667eea;
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
-
/* Source cards styling */
|
| 286 |
-
.source-card {
|
| 287 |
-
background-color: #f0f2f6;
|
| 288 |
-
border-radius: 10px;
|
| 289 |
-
padding: 1rem;
|
| 290 |
-
margin: 0.5rem 0;
|
| 291 |
-
border-left: 3px solid #764ba2;
|
| 292 |
-
}
|
| 293 |
-
|
| 294 |
-
/* Button styling */
|
| 295 |
-
.stButton > button {
|
| 296 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 297 |
-
color: white;
|
| 298 |
-
border: none;
|
| 299 |
-
border-radius: 8px;
|
| 300 |
-
padding: 0.5rem 2rem;
|
| 301 |
-
font-weight: 600;
|
| 302 |
-
transition: transform 0.2s;
|
| 303 |
-
}
|
| 304 |
-
|
| 305 |
-
.stButton > button:hover {
|
| 306 |
-
transform: translateY(-2px);
|
| 307 |
-
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4);
|
| 308 |
-
}
|
| 309 |
-
|
| 310 |
-
/* File uploader styling */
|
| 311 |
-
.uploadedFile {
|
| 312 |
-
background-color: white;
|
| 313 |
-
border-radius: 10px;
|
| 314 |
-
padding: 1rem;
|
| 315 |
-
}
|
| 316 |
-
|
| 317 |
-
/* Text input styling */
|
| 318 |
-
.stTextInput > div > div > input {
|
| 319 |
-
border-radius: 8px;
|
| 320 |
-
border: 2px solid #e0e0e0;
|
| 321 |
-
padding: 0.75rem;
|
| 322 |
-
}
|
| 323 |
-
|
| 324 |
-
.stTextInput > div > div > input:focus {
|
| 325 |
-
border-color: #667eea;
|
| 326 |
-
box-shadow: 0 0 0 2px rgba(102, 126, 234, 0.1);
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
-
/* Footer styling */
|
| 330 |
-
.footer {
|
| 331 |
-
text-align: center;
|
| 332 |
-
padding: 2rem 0;
|
| 333 |
-
margin-top: 3rem;
|
| 334 |
-
border-top: 1px solid #e0e0e0;
|
| 335 |
-
color: #666;
|
| 336 |
-
}
|
| 337 |
-
|
| 338 |
-
/* Success/Error message styling */
|
| 339 |
-
.stSuccess, .stInfo, .stWarning, .stError {
|
| 340 |
-
border-radius: 8px;
|
| 341 |
-
}
|
| 342 |
</style>
|
| 343 |
""", unsafe_allow_html=True)
|
| 344 |
|
|
@@ -350,152 +281,145 @@ def main():
|
|
| 350 |
</div>
|
| 351 |
""", unsafe_allow_html=True)
|
| 352 |
|
| 353 |
-
# Horizontal divider after header
|
| 354 |
st.markdown("---")
|
| 355 |
|
| 356 |
-
#
|
| 357 |
-
if 'vector_db' not in st.session_state:
|
| 358 |
-
st.session_state.vector_db = None
|
| 359 |
-
if 'embedding_model' not in st.session_state:
|
| 360 |
-
st.session_state.embedding_model = None
|
| 361 |
-
if 'processed_file' not in st.session_state:
|
| 362 |
-
st.session_state.processed_file = None
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
with st.container():
|
| 375 |
-
st.markdown("### π Upload Your Document")
|
| 376 |
-
st.markdown("*Select a PDF file to start learning*")
|
| 377 |
-
|
| 378 |
uploaded_file = st.file_uploader(
|
| 379 |
"Choose a PDF file",
|
| 380 |
-
type="pdf",
|
| 381 |
-
help="Upload any PDF document - textbooks, etc.",
|
| 382 |
-
label_visibility="collapsed"
|
| 383 |
)
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
# Create vector database
|
| 408 |
-
if st.session_state.embedding_model:
|
| 409 |
-
with st.spinner("π§ Building knowledge base..."):
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
st.success("β
**Ready to answer your questions!**") # Final success message
|
| 416 |
-
st.session_state.processed_file = uploaded_file.name # Store processed file name
|
| 417 |
-
st.balloons() # Celebration animation
|
| 418 |
else:
|
| 419 |
-
st.error("β Failed to create knowledge base")
|
| 420 |
else:
|
| 421 |
-
st.error("β AI model not available")
|
| 422 |
-
|
| 423 |
-
else:
|
| 424 |
-
st.error(f"β Failed to process PDF: {pdf_result['error']}") # Extraction error
|
| 425 |
|
| 426 |
# Question answering section
|
| 427 |
-
if st.session_state.vector_db is not None:
|
| 428 |
-
st.markdown("---")
|
| 429 |
-
st.markdown("### π¬ Ask Your Questions")
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
# Create a form for better UX
|
| 436 |
-
with st.form(key="question_form"): # Form container for question input
|
| 437 |
question = st.text_input(
|
| 438 |
"What would you like to know?",
|
| 439 |
-
placeholder="e.g., What is the main topic? Summarize chapter 3. Explain the key concepts.",
|
| 440 |
-
help="Ask any question about the content of your document",
|
| 441 |
-
label_visibility="collapsed"
|
| 442 |
)
|
| 443 |
-
|
| 444 |
-
# Submit button inside form
|
| 445 |
submit_button = st.form_submit_button(
|
| 446 |
"π Get Answer",
|
| 447 |
-
use_container_width=True
|
| 448 |
)
|
| 449 |
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
with st.spinner("π€ Thinking..."): # Processing message
|
| 453 |
# Query vector database
|
|
|
|
| 454 |
relevant_chunks = query_vector_database(
|
| 455 |
question,
|
| 456 |
-
|
| 457 |
-
top_k=
|
| 458 |
)
|
| 459 |
|
| 460 |
# Filter by similarity threshold
|
| 461 |
-
SIMILARITY_THRESHOLD = 0.20 # put this at the top of file if not already
|
| 462 |
relevant_chunks = [c for c in relevant_chunks if c.get('similarity', 0) >= SIMILARITY_THRESHOLD]
|
| 463 |
|
| 464 |
-
#
|
| 465 |
if not relevant_chunks:
|
| 466 |
st.warning("β No sufficiently relevant passages found (increase threshold or rephrase question).")
|
| 467 |
else:
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
|
| 477 |
# Display answer in chat bubble style
|
| 478 |
-
st.markdown("#### π― Answer")
|
| 479 |
-
st.markdown(f'<div class="answer-box">{answer}</div>', unsafe_allow_html=True)
|
| 480 |
-
|
| 481 |
# Display sources in a clean format
|
| 482 |
-
st.markdown("#### π Top Sources")
|
| 483 |
-
st.markdown("*Most relevant passages from your document:*")
|
| 484 |
-
|
| 485 |
-
for i, chunk in enumerate(relevant_chunks, 1):
|
| 486 |
-
# Create expandable source cards
|
| 487 |
with st.expander(
|
| 488 |
f"**Source {i}** | π Page {chunk['page_number']} | "
|
| 489 |
-
f"π― Relevance: {chunk['similarity']*100:.0f}%"
|
| 490 |
):
|
| 491 |
-
st.markdown(f'<div class="source-card">{chunk["text"][:500]}...</div>',
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
else:
|
| 495 |
-
st.warning("β No relevant information found for your question. Try rephrasing or asking about topics covered in the document.") # Enhanced warning
|
| 496 |
|
| 497 |
else:
|
| 498 |
-
# Welcome message when no document is loaded
|
| 499 |
st.markdown("""
|
| 500 |
<div style='text-align: center; padding: 3rem; background-color: white; border-radius: 15px; margin: 2rem 0;'>
|
| 501 |
<h3>π Welcome to PageMentor!</h3>
|
|
@@ -504,8 +428,7 @@ def main():
|
|
| 504 |
</div>
|
| 505 |
""", unsafe_allow_html=True)
|
| 506 |
|
| 507 |
-
|
| 508 |
-
# Footer - centered at bottom
|
| 509 |
st.markdown("""
|
| 510 |
<div class="footer">
|
| 511 |
<p>Built with β€οΈ using Streamlit | Powered by Hugging Face | Β© 2025 PageMentor</p>
|
|
@@ -513,7 +436,6 @@ def main():
|
|
| 513 |
</div>
|
| 514 |
""", unsafe_allow_html=True)
|
| 515 |
|
| 516 |
-
# RUN THE APPLICATION
|
| 517 |
|
| 518 |
-
if __name__ == "__main__":
|
| 519 |
-
main()
|
|
|
|
| 12 |
except ImportError:
|
| 13 |
Groq = None
|
| 14 |
|
| 15 |
+
# -----------------------------
|
| 16 |
+
# Config
|
| 17 |
+
# -----------------------------
|
| 18 |
+
SIMILARITY_THRESHOLD = 0.20
|
| 19 |
+
TOP_K = 5
|
| 20 |
+
|
| 21 |
# -----------------------------
|
| 22 |
# Utility Functions
|
| 23 |
# -----------------------------
|
| 24 |
def load_api_key() -> str:
|
| 25 |
+
"""Load the GROQ API key from environment or Hugging Face token fallback."""
|
| 26 |
api_key = os.environ.get("GROQ_API_KEY")
|
| 27 |
if not api_key:
|
| 28 |
try:
|
|
|
|
| 74 |
continue
|
| 75 |
|
| 76 |
words = text.split()
|
| 77 |
+
step = max(1, chunk_size - overlap)
|
| 78 |
+
for i in range(0, len(words), step):
|
| 79 |
chunk_text = " ".join(words[i:i + chunk_size])
|
| 80 |
if chunk_text.strip():
|
| 81 |
chunks.append({
|
|
|
|
| 124 |
|
| 125 |
# Store only the collection name (not object) in session_state
|
| 126 |
st.session_state.collection_name = collection_name
|
| 127 |
+
# Also store a simple flag in vector_db for UI readiness
|
| 128 |
+
st.session_state.vector_db = collection_name
|
| 129 |
return collection_name
|
| 130 |
|
| 131 |
|
| 132 |
def query_vector_database(query: str, embedding_model: SentenceTransformer,
|
| 133 |
+
top_k: int = TOP_K) -> List[Dict]:
|
| 134 |
"""Query ChromaDB for relevant chunks."""
|
| 135 |
if "collection_name" not in st.session_state:
|
| 136 |
st.error("No active collection found. Upload and process a PDF first.")
|
|
|
|
| 172 |
elif isinstance(distance, (int, float)) and distance <= 1:
|
| 173 |
similarity = max(0, 1 - distance)
|
| 174 |
else:
|
| 175 |
+
try:
|
| 176 |
+
similarity = float(distance)
|
| 177 |
+
except Exception:
|
| 178 |
+
similarity = 0.0
|
| 179 |
|
| 180 |
relevant_chunks.append({
|
| 181 |
"text": doc,
|
|
|
|
| 219 |
max_tokens=500
|
| 220 |
)
|
| 221 |
else:
|
| 222 |
+
# Fallback generic call
|
| 223 |
chat_resp = client.create(prompt=prompt, max_tokens=500)
|
| 224 |
|
| 225 |
if hasattr(chat_resp, "choices"):
|
|
|
|
| 236 |
return f"Error generating answer: {e}"
|
| 237 |
|
| 238 |
|
| 239 |
+
# --------------------------------
|
| 240 |
# STREAMLIT UI
|
| 241 |
+
# --------------------------------
|
| 242 |
def main():
|
| 243 |
"""Main Streamlit application."""
|
| 244 |
|
| 245 |
# Page configuration with wide layout for centered design
|
| 246 |
st.set_page_config(
|
| 247 |
+
page_title="PageMentor",
|
| 248 |
+
page_icon="π",
|
| 249 |
+
layout="wide"
|
| 250 |
)
|
| 251 |
|
| 252 |
# Custom CSS for professional styling and centered layout
|
|
|
|
| 258 |
margin: 0 auto;
|
| 259 |
padding: 2rem 1rem;
|
| 260 |
}
|
| 261 |
+
.stApp { background-color: #f8f9fa; }
|
| 262 |
+
.header-container { text-align: center; padding: 2rem 0; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
|
| 263 |
+
.header-title { color: white; font-size: 2.5rem; font-weight: 700; margin-bottom: 0.5rem; }
|
| 264 |
+
.header-subtitle { color: rgba(255,255,255,0.9); font-size: 1.1rem; }
|
| 265 |
+
.answer-box { background-color: white; border-radius: 15px; padding: 1.5rem; margin: 1rem 0; box-shadow: 0 2px 8px rgba(0,0,0,0.08); border-left: 4px solid #667eea; }
|
| 266 |
+
.source-card { background-color: #f0f2f6; border-radius: 10px; padding: 1rem; margin: 0.5rem 0; border-left: 3px solid #764ba2; }
|
| 267 |
+
.stButton > button { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border: none; border-radius: 8px; padding: 0.5rem 2rem; font-weight: 600; transition: transform 0.2s; }
|
| 268 |
+
.stButton > button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(102,126,234,0.4); }
|
| 269 |
+
.uploadedFile { background-color: white; border-radius: 10px; padding: 1rem; }
|
| 270 |
+
.stTextInput > div > div > input { border-radius: 8px; border: 2px solid #e0e0e0; padding: 0.75rem; }
|
| 271 |
+
.stTextInput > div > div > input:focus { border-color: #667eea; box-shadow: 0 0 0 2px rgba(102,126,234,0.1); }
|
| 272 |
+
.footer { text-align: center; padding: 2rem 0; margin-top: 3rem; border-top: 1px solid #e0e0e0; color: #666; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
</style>
|
| 274 |
""", unsafe_allow_html=True)
|
| 275 |
|
|
|
|
| 281 |
</div>
|
| 282 |
""", unsafe_allow_html=True)
|
| 283 |
|
|
|
|
| 284 |
st.markdown("---")
|
| 285 |
|
| 286 |
+
# Session state init
|
| 287 |
+
if 'vector_db' not in st.session_state:
|
| 288 |
+
st.session_state.vector_db = None
|
| 289 |
+
if 'embedding_model' not in st.session_state:
|
| 290 |
+
st.session_state.embedding_model = None
|
| 291 |
+
if 'processed_file' not in st.session_state:
|
| 292 |
+
st.session_state.processed_file = None
|
| 293 |
+
if 'collection_name' not in st.session_state:
|
| 294 |
+
st.session_state.collection_name = None
|
| 295 |
+
|
| 296 |
+
# Load embedding model if not loaded
|
| 297 |
+
if st.session_state.embedding_model is None:
|
| 298 |
+
with st.spinner("π Loading AI models..."):
|
| 299 |
+
st.session_state.embedding_model = load_embedding_model()
|
| 300 |
+
|
| 301 |
+
col1, col2 = st.columns([2, 1])
|
| 302 |
+
|
| 303 |
+
with col1:
|
| 304 |
+
with st.container():
|
| 305 |
+
st.markdown("### π Upload Your Document")
|
| 306 |
+
st.markdown("*Select a PDF file to start learning*")
|
| 307 |
+
|
| 308 |
uploaded_file = st.file_uploader(
|
| 309 |
"Choose a PDF file",
|
| 310 |
+
type="pdf",
|
| 311 |
+
help="Upload any PDF document - textbooks, research papers, articles, etc.",
|
| 312 |
+
label_visibility="collapsed"
|
| 313 |
)
|
| 314 |
|
| 315 |
+
if uploaded_file is not None:
|
| 316 |
+
st.info(f"π **File:** {uploaded_file.name} ({uploaded_file.size / 1024:.1f} KB)")
|
| 317 |
+
|
| 318 |
+
if st.button("π Process Document", use_container_width=True):
|
| 319 |
+
# attempt best-effort cleanup of prior collection
|
| 320 |
+
try:
|
| 321 |
+
old_name = st.session_state.get("collection_name")
|
| 322 |
+
if old_name:
|
| 323 |
+
client_tmp = chromadb.Client()
|
| 324 |
+
if hasattr(client_tmp, "delete_collection"):
|
| 325 |
+
try:
|
| 326 |
+
client_tmp.delete_collection(old_name)
|
| 327 |
+
except Exception:
|
| 328 |
+
pass
|
| 329 |
+
except Exception:
|
| 330 |
+
pass
|
| 331 |
+
|
| 332 |
+
# reset state
|
| 333 |
+
st.session_state.vector_db = None
|
| 334 |
+
st.session_state.collection_name = None
|
| 335 |
+
st.session_state.processed_file = None
|
| 336 |
+
|
| 337 |
+
# process file
|
| 338 |
+
with st.spinner("π Reading and analyzing your document..."):
|
| 339 |
+
chunks = pdf_to_chunks(uploaded_file)
|
| 340 |
+
|
| 341 |
+
if not chunks:
|
| 342 |
+
st.error("β Failed to extract any text from the uploaded PDF.")
|
| 343 |
+
else:
|
| 344 |
+
total_pages = len({c['page_number'] for c in chunks})
|
| 345 |
+
st.success(f"β
Successfully processed **{total_pages} pages**")
|
| 346 |
+
st.info(f"π Created **{len(chunks)}** searchable text segments")
|
| 347 |
|
| 348 |
# Create vector database
|
| 349 |
+
if st.session_state.embedding_model:
|
| 350 |
+
with st.spinner("π§ Building knowledge base..."):
|
| 351 |
+
collection_name = create_vector_database(chunks, st.session_state.embedding_model)
|
| 352 |
+
if collection_name:
|
| 353 |
+
st.session_state.processed_file = uploaded_file.name
|
| 354 |
+
st.success("β
**Ready to answer your questions!**")
|
| 355 |
+
st.balloons()
|
|
|
|
|
|
|
|
|
|
| 356 |
else:
|
| 357 |
+
st.error("β Failed to create knowledge base")
|
| 358 |
else:
|
| 359 |
+
st.error("β AI model not available")
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
# Question answering section
|
| 362 |
+
if st.session_state.vector_db is not None:
|
| 363 |
+
st.markdown("---")
|
| 364 |
+
st.markdown("### π¬ Ask Your Questions")
|
| 365 |
+
|
| 366 |
+
if st.session_state.processed_file:
|
| 367 |
+
st.markdown(f"*Currently learning from: **{st.session_state.processed_file}***")
|
| 368 |
+
|
| 369 |
+
with st.form(key="question_form"):
|
|
|
|
|
|
|
| 370 |
question = st.text_input(
|
| 371 |
"What would you like to know?",
|
| 372 |
+
placeholder="e.g., What is the main topic? Summarize chapter 3. Explain the key concepts.",
|
| 373 |
+
help="Ask any question about the content of your document",
|
| 374 |
+
label_visibility="collapsed"
|
| 375 |
)
|
| 376 |
+
|
|
|
|
| 377 |
submit_button = st.form_submit_button(
|
| 378 |
"π Get Answer",
|
| 379 |
+
use_container_width=True
|
| 380 |
)
|
| 381 |
|
| 382 |
+
if submit_button and question.strip():
|
| 383 |
+
with st.spinner("π€ Thinking..."):
|
|
|
|
| 384 |
# Query vector database
|
| 385 |
+
embedding_model = st.session_state.embedding_model
|
| 386 |
relevant_chunks = query_vector_database(
|
| 387 |
question,
|
| 388 |
+
embedding_model,
|
| 389 |
+
top_k=TOP_K
|
| 390 |
)
|
| 391 |
|
| 392 |
# Filter by similarity threshold
|
|
|
|
| 393 |
relevant_chunks = [c for c in relevant_chunks if c.get('similarity', 0) >= SIMILARITY_THRESHOLD]
|
| 394 |
|
| 395 |
+
# After spinner
|
| 396 |
if not relevant_chunks:
|
| 397 |
st.warning("β No sufficiently relevant passages found (increase threshold or rephrase question).")
|
| 398 |
else:
|
| 399 |
+
# Generate answer
|
| 400 |
+
client = setup_groq()
|
| 401 |
+
if not client:
|
| 402 |
+
st.error("β LLM not configured. Check GROQ_API_KEY and that 'groq' is installed.")
|
| 403 |
+
else:
|
| 404 |
+
answer = generate_answer_with_groq(client, question, relevant_chunks)
|
|
|
|
|
|
|
| 405 |
|
| 406 |
# Display answer in chat bubble style
|
| 407 |
+
st.markdown("#### π― Answer")
|
| 408 |
+
st.markdown(f'<div class="answer-box">{answer}</div>', unsafe_allow_html=True)
|
| 409 |
+
|
| 410 |
# Display sources in a clean format
|
| 411 |
+
st.markdown("#### π Top Sources")
|
| 412 |
+
st.markdown("*Most relevant passages from your document:*")
|
| 413 |
+
|
| 414 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
|
|
|
| 415 |
with st.expander(
|
| 416 |
f"**Source {i}** | π Page {chunk['page_number']} | "
|
| 417 |
+
f"π― Relevance: {chunk['similarity']*100:.0f}%"
|
| 418 |
):
|
| 419 |
+
st.markdown(f'<div class="source-card">{chunk["text"][:500]}...</div>',
|
| 420 |
+
unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 421 |
|
| 422 |
else:
|
|
|
|
| 423 |
st.markdown("""
|
| 424 |
<div style='text-align: center; padding: 3rem; background-color: white; border-radius: 15px; margin: 2rem 0;'>
|
| 425 |
<h3>π Welcome to PageMentor!</h3>
|
|
|
|
| 428 |
</div>
|
| 429 |
""", unsafe_allow_html=True)
|
| 430 |
|
| 431 |
+
# Footer
|
|
|
|
| 432 |
st.markdown("""
|
| 433 |
<div class="footer">
|
| 434 |
<p>Built with β€οΈ using Streamlit | Powered by Hugging Face | Β© 2025 PageMentor</p>
|
|
|
|
| 436 |
</div>
|
| 437 |
""", unsafe_allow_html=True)
|
| 438 |
|
|
|
|
| 439 |
|
| 440 |
+
if __name__ == "__main__":
|
| 441 |
+
main()
|