Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -96,148 +96,212 @@ def plot_feature_importance(model, feature_names, model_type):
|
|
96 |
plt.title(f"Feature Importance - {model_type}")
|
97 |
return plt.gcf()
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def app():
|
100 |
-
|
|
|
101 |
|
102 |
# Load data
|
103 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
104 |
|
105 |
# Train models if not in session state
|
106 |
if 'model_results' not in st.session_state:
|
107 |
-
with st.spinner("Entraînement des modèles en cours..."):
|
108 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
109 |
|
110 |
-
# Sidebar
|
111 |
-
st.sidebar
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
"
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
current_model = st.session_state.model_results[selected_model]['model']
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
st.subheader("Comparaison des performances")
|
133 |
-
performance_fig = plot_model_performance(st.session_state.model_results)
|
134 |
-
st.pyplot(performance_fig)
|
135 |
-
|
136 |
-
# Detailed metrics for selected model
|
137 |
-
st.subheader(f"Métriques détaillées - {selected_model}")
|
138 |
-
col1, col2 = st.columns(2)
|
139 |
-
|
140 |
-
with col1:
|
141 |
-
st.write("Métriques d'entraînement:")
|
142 |
-
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
143 |
-
st.write(f"{metric}: {value:.4f}")
|
144 |
-
|
145 |
-
with col2:
|
146 |
-
st.write("Métriques de test:")
|
147 |
-
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
148 |
-
st.write(f"{metric}: {value:.4f}")
|
149 |
-
|
150 |
-
# Interprétation du modèle
|
151 |
-
elif page == "Interprétation du modèle":
|
152 |
-
st.header(f"Interprétation du modèle - {selected_model}")
|
153 |
-
|
154 |
-
if selected_model in ["Decision Tree", "Random Forest"]:
|
155 |
-
if selected_model == "Decision Tree":
|
156 |
-
st.subheader("Visualisation de l'arbre")
|
157 |
-
max_depth = st.slider("Profondeur maximale à afficher", 1, 5, 3)
|
158 |
-
fig, ax = plt.subplots(figsize=(20, 10))
|
159 |
-
plot_tree(current_model, feature_names=list(feature_names),
|
160 |
-
max_depth=max_depth, filled=True, rounded=True)
|
161 |
-
st.pyplot(fig)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
# SHAP values for all models
|
168 |
-
st.subheader("SHAP Values")
|
169 |
-
with st.spinner("Calcul des valeurs SHAP en cours..."):
|
170 |
-
explainer = shap.TreeExplainer(current_model) if selected_model != "Logistic Regression" \
|
171 |
-
else shap.LinearExplainer(current_model, X_train)
|
172 |
-
shap_values = explainer.shap_values(X_train[:100]) # Using first 100 samples for speed
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
st.pyplot(fig)
|
178 |
-
|
179 |
-
# Analyse des caractéristiques
|
180 |
-
elif page == "Analyse des caractéristiques":
|
181 |
-
st.header("Analyse des caractéristiques")
|
182 |
-
|
183 |
-
# Feature importance
|
184 |
-
st.subheader("Importance des caractéristiques")
|
185 |
-
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
|
186 |
-
st.pyplot(importance_fig)
|
187 |
-
|
188 |
-
# Feature correlation
|
189 |
-
st.subheader("Matrice de corrélation")
|
190 |
-
corr_matrix = X_train.corr()
|
191 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
192 |
-
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
|
193 |
-
st.pyplot(fig)
|
194 |
-
|
195 |
-
# Simulateur de prédictions
|
196 |
-
else:
|
197 |
-
st.header("Simulateur de prédictions")
|
198 |
-
|
199 |
-
input_values = {}
|
200 |
-
for feature in feature_names:
|
201 |
-
if X_train[feature].dtype == 'object':
|
202 |
-
input_values[feature] = st.selectbox(
|
203 |
-
f"Sélectionnez {feature}",
|
204 |
-
options=X_train[feature].unique()
|
205 |
-
)
|
206 |
-
else:
|
207 |
-
input_values[feature] = st.slider(
|
208 |
-
f"Valeur pour {feature}",
|
209 |
-
float(X_train[feature].min()),
|
210 |
-
float(X_train[feature].max()),
|
211 |
-
float(X_train[feature].mean())
|
212 |
-
)
|
213 |
-
|
214 |
-
if st.button("Prédire"):
|
215 |
-
input_df = pd.DataFrame([input_values])
|
216 |
|
217 |
-
|
|
|
|
|
|
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
leaf_id = current_model.apply(input_df)
|
226 |
-
|
227 |
-
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
|
228 |
-
|
229 |
-
rules = []
|
230 |
-
for node_id in node_index:
|
231 |
-
if node_id != leaf_id[0]:
|
232 |
-
threshold = current_model.tree_.threshold[node_id]
|
233 |
-
feature = feature_names[current_model.tree_.feature[node_id]]
|
234 |
-
if input_df.iloc[0][feature] <= threshold:
|
235 |
-
rules.append(f"{feature} ≤ {threshold:.2f}")
|
236 |
-
else:
|
237 |
-
rules.append(f"{feature} > {threshold:.2f}")
|
238 |
-
|
239 |
-
for rule in rules:
|
240 |
-
st.write(rule)
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
app()
|
|
|
96 |
plt.title(f"Feature Importance - {model_type}")
|
97 |
return plt.gcf()
|
98 |
|
99 |
+
import streamlit as st
|
100 |
+
import pandas as pd
|
101 |
+
import numpy as np
|
102 |
+
import matplotlib.pyplot as plt
|
103 |
+
from sklearn.tree import plot_tree, export_text
|
104 |
+
import seaborn as sns
|
105 |
+
from sklearn.preprocessing import LabelEncoder
|
106 |
+
from sklearn.ensemble import RandomForestClassifier
|
107 |
+
from sklearn.tree import DecisionTreeClassifier
|
108 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
109 |
+
from sklearn.linear_model import LogisticRegression
|
110 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
111 |
+
import shap
|
112 |
+
|
113 |
+
# Configuration de la page et du thème
|
114 |
+
st.set_page_config(
|
115 |
+
page_title="ML Model Interpreter",
|
116 |
+
layout="wide",
|
117 |
+
initial_sidebar_state="expanded"
|
118 |
+
)
|
119 |
+
|
120 |
+
# CSS personnalisé
|
121 |
+
st.markdown("""
|
122 |
+
<style>
|
123 |
+
/* Couleurs principales */
|
124 |
+
:root {
|
125 |
+
--primary-blue: #1E88E5;
|
126 |
+
--light-blue: #90CAF9;
|
127 |
+
--dark-blue: #0D47A1;
|
128 |
+
--white: #FFFFFF;
|
129 |
+
}
|
130 |
+
|
131 |
+
/* En-tête principal */
|
132 |
+
.main-header {
|
133 |
+
color: var(--dark-blue);
|
134 |
+
text-align: center;
|
135 |
+
padding: 1rem;
|
136 |
+
background: linear-gradient(90deg, var(--white) 0%, var(--light-blue) 50%, var(--white) 100%);
|
137 |
+
border-radius: 10px;
|
138 |
+
margin-bottom: 2rem;
|
139 |
+
}
|
140 |
+
|
141 |
+
/* Carte pour les métriques */
|
142 |
+
.metric-card {
|
143 |
+
background-color: white;
|
144 |
+
padding: 1.5rem;
|
145 |
+
border-radius: 10px;
|
146 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
147 |
+
margin-bottom: 1rem;
|
148 |
+
}
|
149 |
+
|
150 |
+
/* Style pour les sous-titres */
|
151 |
+
.sub-header {
|
152 |
+
color: var(--primary-blue);
|
153 |
+
border-bottom: 2px solid var(--light-blue);
|
154 |
+
padding-bottom: 0.5rem;
|
155 |
+
margin-bottom: 1rem;
|
156 |
+
}
|
157 |
+
|
158 |
+
/* Style pour les valeurs de métriques */
|
159 |
+
.metric-value {
|
160 |
+
font-size: 1.5rem;
|
161 |
+
font-weight: bold;
|
162 |
+
color: var(--primary-blue);
|
163 |
+
}
|
164 |
+
|
165 |
+
/* Style pour la barre latérale */
|
166 |
+
.sidebar .sidebar-content {
|
167 |
+
background-color: var(--white);
|
168 |
+
}
|
169 |
+
|
170 |
+
/* Style pour les boutons */
|
171 |
+
.stButton > button {
|
172 |
+
background-color: var(--primary-blue);
|
173 |
+
color: white;
|
174 |
+
border-radius: 5px;
|
175 |
+
border: none;
|
176 |
+
padding: 0.5rem 1rem;
|
177 |
+
}
|
178 |
+
|
179 |
+
/* Style pour les sliders */
|
180 |
+
.stSlider > div > div {
|
181 |
+
background-color: var(--light-blue);
|
182 |
+
}
|
183 |
+
|
184 |
+
/* Style pour les selectbox */
|
185 |
+
.stSelectbox > div > div {
|
186 |
+
background-color: white;
|
187 |
+
border: 1px solid var(--light-blue);
|
188 |
+
}
|
189 |
+
</style>
|
190 |
+
""", unsafe_allow_html=True)
|
191 |
+
|
192 |
+
def custom_metric_card(title, value, prefix=""):
|
193 |
+
return f"""
|
194 |
+
<div class="metric-card">
|
195 |
+
<h3 style="color: #1E88E5; margin-bottom: 0.5rem;">{title}</h3>
|
196 |
+
<p class="metric-value">{prefix}{value:.4f}</p>
|
197 |
+
</div>
|
198 |
+
"""
|
199 |
+
|
200 |
+
def plot_with_style(fig):
|
201 |
+
# Style matplotlib
|
202 |
+
plt.style.use('seaborn')
|
203 |
+
fig.patch.set_facecolor('#FFFFFF')
|
204 |
+
for ax in fig.axes:
|
205 |
+
ax.set_facecolor('#F8F9FA')
|
206 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
207 |
+
ax.spines['top'].set_visible(False)
|
208 |
+
ax.spines['right'].set_visible(False)
|
209 |
+
return fig
|
210 |
+
|
211 |
+
# [Fonctions load_data et train_models restent identiques]
|
212 |
+
|
213 |
+
def plot_model_performance(results):
|
214 |
+
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
|
215 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
|
216 |
+
|
217 |
+
# Configuration du style
|
218 |
+
plt.style.use('seaborn')
|
219 |
+
colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
|
220 |
+
|
221 |
+
# Training metrics
|
222 |
+
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
|
223 |
+
for model in results.keys()}
|
224 |
+
train_df = pd.DataFrame(train_data, index=metrics)
|
225 |
+
train_df.plot(kind='bar', ax=axes[0], title='Performance d\'Entraînement',
|
226 |
+
color=colors)
|
227 |
+
axes[0].set_ylim(0, 1)
|
228 |
+
|
229 |
+
# Test metrics
|
230 |
+
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
|
231 |
+
for model in results.keys()}
|
232 |
+
test_df = pd.DataFrame(test_data, index=metrics)
|
233 |
+
test_df.plot(kind='bar', ax=axes[1], title='Performance de Test',
|
234 |
+
color=colors)
|
235 |
+
axes[1].set_ylim(0, 1)
|
236 |
+
|
237 |
+
# Style des graphiques
|
238 |
+
for ax in axes:
|
239 |
+
ax.set_facecolor('#F8F9FA')
|
240 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
241 |
+
ax.spines['top'].set_visible(False)
|
242 |
+
ax.spines['right'].set_visible(False)
|
243 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
244 |
+
|
245 |
+
plt.tight_layout()
|
246 |
+
return fig
|
247 |
+
|
248 |
def app():
|
249 |
+
# En-tête principal avec style personnalisé
|
250 |
+
st.markdown('<h1 class="main-header">Interpréteur de Modèles ML</h1>', unsafe_allow_html=True)
|
251 |
|
252 |
# Load data
|
253 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
254 |
|
255 |
# Train models if not in session state
|
256 |
if 'model_results' not in st.session_state:
|
257 |
+
with st.spinner("🔄 Entraînement des modèles en cours..."):
|
258 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
259 |
|
260 |
+
# Sidebar avec style personnalisé
|
261 |
+
with st.sidebar:
|
262 |
+
st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>', unsafe_allow_html=True)
|
263 |
+
selected_model = st.selectbox(
|
264 |
+
"📊 Sélectionnez un modèle",
|
265 |
+
list(st.session_state.model_results.keys())
|
266 |
+
)
|
267 |
+
|
268 |
+
st.markdown('<hr style="margin: 1rem 0;">', unsafe_allow_html=True)
|
269 |
+
|
270 |
+
page = st.radio(
|
271 |
+
"📑 Sélectionnez une section",
|
272 |
+
["Performance des modèles",
|
273 |
+
"Interprétation du modèle",
|
274 |
+
"Analyse des caractéristiques",
|
275 |
+
"Simulateur de prédictions"]
|
276 |
+
)
|
277 |
|
278 |
current_model = st.session_state.model_results[selected_model]['model']
|
279 |
|
280 |
+
# Container principal avec padding
|
281 |
+
main_container = st.container()
|
282 |
+
with main_container:
|
283 |
+
if page == "Performance des modèles":
|
284 |
+
st.markdown('<h2 class="sub-header">Performance des modèles</h2>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
# Graphiques de performance
|
287 |
+
performance_fig = plot_model_performance(st.session_state.model_results)
|
288 |
+
st.pyplot(plot_with_style(performance_fig))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
# Métriques détaillées dans des cartes
|
291 |
+
st.markdown('<h3 class="sub-header">Métriques détaillées</h3>', unsafe_allow_html=True)
|
292 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
with col1:
|
295 |
+
st.markdown('<h4 style="color: #1E88E5;">Entraînement</h4>', unsafe_allow_html=True)
|
296 |
+
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
297 |
+
st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
|
298 |
|
299 |
+
with col2:
|
300 |
+
st.markdown('<h4 style="color: #1E88E5;">Test</h4>', unsafe_allow_html=True)
|
301 |
+
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
302 |
+
st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
|
303 |
+
|
304 |
+
# [Le reste des sections avec style adapté...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
if __name__ == "__main__":
|
307 |
app()
|