anakin87 commited on
Commit
408dd7e
·
1 Parent(s): 274b354

rebuild the ternary plot w cliponaxis=False

Browse files
Rock_fact_checker.py CHANGED
@@ -4,8 +4,6 @@ import logging
4
  from json import JSONDecodeError
5
 
6
  import streamlit as st
7
- import pandas as pd
8
- import plotly.express as px
9
 
10
  from app_utils.backend_utils import load_statements, query
11
  from app_utils.frontend_utils import (
@@ -13,6 +11,7 @@ from app_utils.frontend_utils import (
13
  reset_results,
14
  entailment_html_messages,
15
  create_df_for_relevant_snippets,
 
16
  )
17
  from app_utils.config import RETRIEVER_TOP_K
18
 
@@ -59,12 +58,14 @@ def main():
59
  # Re-runs the script setting the random statement as the textbox value
60
  # Unfortunately necessary as the Random statement button is _below_ the textbox
61
  # Adapted for Streamlit>=1.12
62
- if hasattr(st, 'scriptrunner'):
63
- raise st.scriptrunner.script_runner.RerunException(st.scriptrunner.script_requests.RerunData(""))
 
 
64
  else:
65
  raise st.runtime.scriptrunner.script_runner.RerunException(
66
- st.runtime.scriptrunner.script_requests.RerunData("")
67
- )
68
  else:
69
  st.session_state.random_statement_requested = False
70
  run_query = (
@@ -79,7 +80,7 @@ def main():
79
  with st.spinner("🧠    Performing neural search on documents..."):
80
  try:
81
  st.session_state.results = query(statement, RETRIEVER_TOP_K)
82
- print(query)
83
  time_end = time.time()
84
  print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()))
85
  print(f"elapsed time: {time_end - time_start}")
@@ -105,20 +106,14 @@ def main():
105
 
106
  st.markdown(f"###### Aggregate entailment information:")
107
  col1, col2 = st.columns([2, 1])
108
- df_agg_entailment_info = pd.DataFrame([results["agg_entailment_info"]])
109
- fig = px.scatter_ternary(
110
- df_agg_entailment_info,
111
- a="contradiction",
112
- b="neutral",
113
- c="entailment",
114
- size="contradiction",
115
- )
116
  with col1:
117
  st.plotly_chart(fig, use_container_width=True)
118
  with col2:
119
  st.write(results["agg_entailment_info"])
120
 
121
- st.markdown(f"###### Relevant snippets:")
122
  df, urls = create_df_for_relevant_snippets(docs)
123
  st.dataframe(df)
124
 
 
4
  from json import JSONDecodeError
5
 
6
  import streamlit as st
 
 
7
 
8
  from app_utils.backend_utils import load_statements, query
9
  from app_utils.frontend_utils import (
 
11
  reset_results,
12
  entailment_html_messages,
13
  create_df_for_relevant_snippets,
14
+ create_ternary_plot,
15
  )
16
  from app_utils.config import RETRIEVER_TOP_K
17
 
 
58
  # Re-runs the script setting the random statement as the textbox value
59
  # Unfortunately necessary as the Random statement button is _below_ the textbox
60
  # Adapted for Streamlit>=1.12
61
+ if hasattr(st, "scriptrunner"):
62
+ raise st.scriptrunner.script_runner.RerunException(
63
+ st.scriptrunner.script_requests.RerunData("")
64
+ )
65
  else:
66
  raise st.runtime.scriptrunner.script_runner.RerunException(
67
+ st.runtime.scriptrunner.script_requests.RerunData("")
68
+ )
69
  else:
70
  st.session_state.random_statement_requested = False
71
  run_query = (
 
80
  with st.spinner("🧠    Performing neural search on documents..."):
81
  try:
82
  st.session_state.results = query(statement, RETRIEVER_TOP_K)
83
+ print(statement)
84
  time_end = time.time()
85
  print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()))
86
  print(f"elapsed time: {time_end - time_start}")
 
106
 
107
  st.markdown(f"###### Aggregate entailment information:")
108
  col1, col2 = st.columns([2, 1])
109
+ agg_entailment_info = results["agg_entailment_info"]
110
+ fig = create_ternary_plot(agg_entailment_info)
 
 
 
 
 
 
111
  with col1:
112
  st.plotly_chart(fig, use_container_width=True)
113
  with col2:
114
  st.write(results["agg_entailment_info"])
115
 
116
+ st.markdown(f"###### Most Relevant snippets:")
117
  df, urls = create_df_for_relevant_snippets(docs)
118
  st.dataframe(df)
119
 
app_utils/config.py CHANGED
@@ -11,7 +11,8 @@ RETRIEVER_TOP_K = 5
11
 
12
  # In HF Space, we use microsoft/deberta-v2-xlarge-mnli
13
  # for local testing, a smaller model is better
14
- NLI_MODEL = "valhalla/distilbart-mnli-12-1"
15
- if hasattr(st, 'secrets'):
16
- NLI_MODEL = st.secrets['NLI_MODEL']
17
- print(f'Used NLI model: {NLI_MODEL}')
 
 
11
 
12
  # In HF Space, we use microsoft/deberta-v2-xlarge-mnli
13
  # for local testing, a smaller model is better
14
+ try:
15
+ NLI_MODEL = st.secrets["NLI_MODEL"]
16
+ except:
17
+ NLI_MODEL = "valhalla/distilbart-mnli-12-1"
18
+ print(f"Used NLI model: {NLI_MODEL}")
app_utils/frontend_utils.py CHANGED
@@ -1,5 +1,7 @@
1
  import streamlit as st
2
  import pandas as pd
 
 
3
 
4
  entailment_html_messages = {
5
  "entailment": 'The knowledge base seems to <span style="color:green">confirm</span> your statement',
@@ -20,6 +22,57 @@ def reset_results(*args):
20
  st.session_state.raw_json = None
21
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  def highlight_cols(s):
24
  coldict = {"con": "#FFA07A", "neu": "#E5E4E2", "ent": "#a9d39e"}
25
  if s.name in coldict.keys():
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import plotly.graph_objects as go
4
+
5
 
6
  entailment_html_messages = {
7
  "entailment": 'The knowledge base seems to <span style="color:green">confirm</span> your statement',
 
22
  st.session_state.raw_json = None
23
 
24
 
25
+ def create_ternary_plot(entailment_data):
26
+ hover_text = ""
27
+ for label, value in entailment_data.items():
28
+ hover_text += f"{label}: {value}<br>"
29
+
30
+ fig = go.Figure(
31
+ go.Scatterternary(
32
+ {
33
+ "cliponaxis": False,
34
+ "mode": "markers",
35
+ "a": [i for i in map(lambda x: x["entailment"], [entailment_data])],
36
+ "b": [i for i in map(lambda x: x["contradiction"], [entailment_data])],
37
+ "c": [i for i in map(lambda x: x["neutral"], [entailment_data])],
38
+ "hoverinfo": "text",
39
+ "text": hover_text,
40
+ "marker": {
41
+ "color": "#636efa",
42
+ "size": [0.01],
43
+ "sizemode": "area",
44
+ "sizeref": 2.5e-05,
45
+ "symbol": "circle",
46
+ },
47
+ }
48
+ )
49
+ )
50
+
51
+ fig.update_layout(
52
+ {
53
+ "ternary": {
54
+ "sum": 1,
55
+ "aaxis": makeAxis("Entailment", 0),
56
+ "baxis": makeAxis("<br>Contradiction", 45),
57
+ "caxis": makeAxis("<br>Neutral", -45),
58
+ }
59
+ }
60
+ )
61
+ return fig
62
+
63
+
64
+ def makeAxis(title, tickangle):
65
+ return {
66
+ "title": title,
67
+ "titlefont": {"size": 20},
68
+ "tickangle": tickangle,
69
+ "tickcolor": "rgba(0,0,0,0)",
70
+ "ticklen": 5,
71
+ "showline": False,
72
+ "showgrid": True,
73
+ }
74
+
75
+
76
  def highlight_cols(s):
77
  coldict = {"con": "#FFA07A", "neu": "#E5E4E2", "ent": "#a9d39e"}
78
  if s.name in coldict.keys():
data/statements.txt CHANGED
@@ -29,7 +29,7 @@ Sum 41 were originally called Kaspir
29
  Bruce Springsteen has been named "the buzz"
30
  Talking Heads collaborated with Brian Eno
31
  Chris Cornell took part in Soundgarden and Audioslave
32
- Chris Cornell took part in Pearl Jam
33
  "There is a light that never goes out" is a song by The Smiths
34
  Guns N' Roses formed in 1987
35
  Izzy Stradlin took part in Guns N' Roses
 
29
  Bruce Springsteen has been named "the buzz"
30
  Talking Heads collaborated with Brian Eno
31
  Chris Cornell took part in Soundgarden and Audioslave
32
+ Chris Cornell was a member of Pearl Jam
33
  "There is a light that never goes out" is a song by The Smiths
34
  Guns N' Roses formed in 1987
35
  Izzy Stradlin took part in Guns N' Roses