mj-new
working audio file saving
0147fc2
raw
history blame
9.6 kB
import gradio as gr
import whisper
import numpy as np
import openai
import os
from gtts import gTTS
import json
import hashlib
import random
import string
import uuid
from datetime import date,datetime
from huggingface_hub import Repository, upload_file
import shutil
HF_TOKEN_WRITE = os.environ.get("HF_TOKEN_WRITE")
print("HF_TOKEN_WRITE", HF_TOKEN_WRITE)
today = date.today()
today_ymd = today.strftime("%Y%m%d")
def greet(name):
return "Hello " + name + "!!"
with open('app.css','r') as f:
css_file = f.read()
markdown="""
# Polish ASR BIGOS workspace
"""
# TODO move to config
WORKING_DATASET_REPO_URL = "https://huggingface.co/datasets/goodmike31/working-db"
REPO_NAME = "goodmike31/working-db"
REPOSITORY_DIR = "data"
LOCAL_DIR = "data_local"
os.makedirs(LOCAL_DIR,exist_ok=True)
def dump_json(thing,file):
with open(file,'w+',encoding="utf8") as f:
json.dump(thing,f)
def get_unique_name():
return ''.join([random.choice(string.ascii_letters
+ string.digits) for n in range(32)])
def save_recording_and_meta(project_name, recording, transcript, language):
#, name, age, gender):
# TODO save user data in the next version
speaker_metadata={}
speaker_metadata['gender'] = "test" #gender if gender!=GENDER[0] else ''
speaker_metadata['age'] = "test" #age if age !='' else ''
speaker_metadata['accent'] = "test" #accent if accent!='' else ''
lang_id = language.lower()
# TODO get ISO-693-1 codes
transcript =transcript.strip()
SAVE_ROOT_DIR = os.path.join(LOCAL_DIR, project_name, today_ymd)
SAVE_DIR_AUDIO = os.path.join(SAVE_ROOT_DIR, "audio")
SAVE_DIR_META = os.path.join(SAVE_ROOT_DIR, "meta")
os.makedirs(SAVE_DIR_AUDIO, exist_ok=True)
os.makedirs(SAVE_DIR_META, exist_ok=True)
# Write audio to file
#audio_name = get_unique_name()
uuid_name = str(uuid.uuid4())
audio_fn = uuid_name + ".wav"
audio_output_fp = os.path.join(SAVE_DIR_AUDIO, audio_fn)
print (f"Saving {recording} as {audio_output_fp}")
shutil.copy2(recording, audio_output_fp)
# Write metadata.json to file
meta_fn = uuid_name + 'metadata.jsonl'
json_file_path = os.path.join(SAVE_DIR_META, meta_fn)
now = datetime.now()
timestamp_str = now.strftime("%d/%m/%Y %H:%M:%S")
metadata= {'id':uuid_name,'audio_file': audio_fn,
'language_name':language,'language_id':lang_id,
'transcript':transcript,'age': speaker_metadata['age'],
'gender': speaker_metadata['gender'],'accent': speaker_metadata['accent'],
"date":today_ymd, "timestamp": timestamp_str }
dump_json(metadata, json_file_path)
# Simply upload the audio file and metadata using the hub's upload_file
# Upload the audio
repo_audio_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "audio", audio_fn)
_ = upload_file(path_or_fileobj = audio_output_fp,
path_in_repo = repo_audio_path,
repo_id = REPO_NAME,
repo_type = 'dataset',
token = HF_TOKEN_WRITE
)
# Upload the metadata
repo_json_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "meta", meta_fn)
_ = upload_file(path_or_fileobj = json_file_path,
path_in_repo = repo_json_path,
repo_id = REPO_NAME,
repo_type = 'dataset',
token = HF_TOKEN_WRITE
)
output = print(f"Recording {audio_fn} and meta file {meta_fn} successfully saved to repo!")
return
def whisper_model_change(radio_whisper_model):
whisper_model = whisper.load_model(radio_whisper_model)
return(whisper_model)
def prompt_gpt(input_text, api_key, temperature):
#, role, template_prompt, template_answer):
#TODO add option to specify instruction
openai.api_key = api_key
#TODO add specific message for specific role
system_role_message="You are a helpful assistant"
messages = [
{"role": "system", "content": system_role_message}]
if input_text:
messages.append(
{"role": "user", "content": input_text},
)
chat_completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=temperature
)
reply = chat_completion.choices[0].message.content
#TODO save chat completion for future reuse
return reply
def process_pipeline(audio):
asr_out = transcribe(audio)
gpt_out = prompt_gpt(asr_out)
tts_out = synthesize_speech(gpt_out)
return(tts_out)
def transcribe(audio, language, whisper_model, whisper_model_type):
if not whisper_model:
whisper_model=init_whisper_model(whisper_model_type)
print(f"Transcribing {audio} for language {language} and model {whisper_model_type}")
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio)
options = whisper.DecodingOptions(language=language, without_timestamps=True, fp16=False)
result = whisper.decode(whisper_model, mel, options)
result_text = result.text
return result_text
def init_whisper_model(whisper_model_type):
print("Initializing whisper model")
print(whisper_model_type)
whisper_model = whisper.load_model(whisper_model_type)
return whisper_model
def synthesize_speech(text, language):
audioobj = gTTS(text = text,
lang = language,
slow = False)
audioobj.save("Temp.mp3")
return("Temp.mp3")
block = gr.Blocks(css=css_file)
with block:
#state variables
language = gr.State("en")
temperature = gr.State(0)
whisper_model_type = gr.State("base")
whisper_model = gr.State()
api_key = gr.State()
project_name = gr.State("voicebot") # TODO add list of projects to organize saved data
# state handling functions
def change_language(choice):
if choice == "Polish":
language="pl"
print("Switching to Polish")
print("language")
print(language)
elif choice == "English":
language="en"
print("Switching to English")
print("language")
print(language)
return(language)
def change_whisper_model(choice):
whisper_model_type = choice
print("Switching Whisper model")
print(whisper_model_type)
whisper_model = init_whisper_model(whisper_model_type)
return [whisper_model_type, whisper_model]
gr.Markdown(markdown)
with gr.Tabs():
with gr.Row():
with gr.TabItem('Voicebot playground'):
with gr.Accordion(label="Settings"):
gr.HTML("<p class=\"apikey\">Open AI API Key:</p>")
# API key textbox (password-style)
api_key = gr.Textbox(label="", elem_id="pw")
slider_temp = gr.Slider(minimum=0, maximum= 2, step=0.2, label="ChatGPT temperature")
radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used")
#radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
#radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are more accurate, but slower. Default - base")
with gr.Box():
with gr.Row():
mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')
button_transcribe = gr.Button("Transcribe speech")
button_save_audio_and_trans = gr.Button("Save recording and meta")
out_asr = gr.Textbox(placeholder="ASR output",
lines=2,
max_lines=5,
show_label=False)
button_prompt_gpt = gr.Button("Prompt ChatGPT")
out_gpt = gr.Textbox(placeholder="ChatGPT output",
lines=4,
max_lines=10,
show_label=False)
button_synth_speech = gr.Button("Synthesize speech")
synth_recording = gr.Audio()
# Events actions
button_save_audio_and_trans.click(save_recording_and_meta, inputs=[project_name, mic_recording, out_asr, language], outputs=[])
button_transcribe.click(transcribe, inputs=[mic_recording, language, whisper_model,whisper_model_type], outputs=out_asr)
button_prompt_gpt.click(prompt_gpt, inputs=[out_asr, api_key, slider_temp], outputs=out_gpt)
button_synth_speech.click(synthesize_speech, inputs=[out_gpt, language], outputs=synth_recording)
radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language)
radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])
block.launch()