Spaces:
Sleeping
Sleeping
michal
commited on
Commit
β’
54f0e5a
1
Parent(s):
dfd3fd2
Upload
Browse files- app.py +135 -0
- leaderboards/pes_accuracy.json +266 -0
- leaderboards/r_ldek_report_scores.json +132 -0
- leaderboards/r_lek_report_scores.json +132 -0
- requirements.txt +16 -0
- src/abouts.py +24 -0
- src/envs.py +25 -0
- src/images/logo.png +0 -0
- src/structures/all_structure.py +63 -0
- src/structures/ldek_structure.py +66 -0
- src/structures/lek_structure.py +64 -0
- src/structures/pes_structure.py +72 -0
- src/styles.py +108 -0
- src/utils.py +1 -0
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from src.styles import custom_css
|
3 |
+
|
4 |
+
from src.structures.all_structure import (
|
5 |
+
ALL_ACCS,
|
6 |
+
STYLED
|
7 |
+
# ALL_DATA_TYPES,
|
8 |
+
# ALL_ORDER_LIST
|
9 |
+
)
|
10 |
+
from src.structures.pes_structure import (PES_ACCS,
|
11 |
+
ORDER_LIST,
|
12 |
+
DATA_TYPES,
|
13 |
+
COLUMN_HEADERS,
|
14 |
+
filter_data,
|
15 |
+
filter_columns,
|
16 |
+
)
|
17 |
+
from src.abouts import *
|
18 |
+
from src.structures.lek_structure import (
|
19 |
+
LEK_ACCS,
|
20 |
+
ORDER_LIST_LEK,
|
21 |
+
COLUMN_HEADERS_LEK,
|
22 |
+
DATA_TYPES_LEK,
|
23 |
+
filter_columns_lek
|
24 |
+
)
|
25 |
+
from src.structures.ldek_structure import (
|
26 |
+
LDEK_ACCS,
|
27 |
+
ORDER_LIST_LDEK,
|
28 |
+
COLUMN_HEADERS_LDEK,
|
29 |
+
DATA_TYPES_LDEK,
|
30 |
+
filter_columns_ldek
|
31 |
+
)
|
32 |
+
|
33 |
+
global data_component
|
34 |
+
global data_component_ldek
|
35 |
+
|
36 |
+
main = gr.Blocks(css=custom_css)
|
37 |
+
with main:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
image = gr.Image("src/images/logo.png",
|
41 |
+
show_download_button=False,
|
42 |
+
show_share_button=False,
|
43 |
+
show_fullscreen_button=False,
|
44 |
+
container=False)
|
45 |
+
with gr.Column():
|
46 |
+
gr.HTML(HEADER_TITLE)
|
47 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
48 |
+
with gr.TabItem("π₯ Medical leaderboard"):
|
49 |
+
gr.Markdown(LEADERBOARD_DESC)
|
50 |
+
data_component = gr.components.Dataframe(
|
51 |
+
value=STYLED,
|
52 |
+
type="pandas",
|
53 |
+
datatype=["markdown"],
|
54 |
+
interactive=False,
|
55 |
+
visible=True,
|
56 |
+
show_label=True,
|
57 |
+
column_widths=[400,150,150,150,150]
|
58 |
+
)
|
59 |
+
|
60 |
+
with gr.TabItem("π₯ PES"):
|
61 |
+
gr.Markdown(PES_DESC)
|
62 |
+
# Checkbox to toggle column visibility
|
63 |
+
columns_selector = gr.CheckboxGroup(
|
64 |
+
choices=ORDER_LIST,
|
65 |
+
label="Select columns to display",
|
66 |
+
value=ORDER_LIST,
|
67 |
+
)
|
68 |
+
# Dataframe component to display the leaderboard data
|
69 |
+
data_component = gr.components.Dataframe(
|
70 |
+
value=PES_ACCS,
|
71 |
+
headers=COLUMN_HEADERS,
|
72 |
+
type="pandas",
|
73 |
+
datatype=DATA_TYPES,
|
74 |
+
interactive=False,
|
75 |
+
visible=True,
|
76 |
+
# column_widths=[400] + [250] * (len(COLUMN_HEADERS) - 1)
|
77 |
+
)
|
78 |
+
def update_dataframe(selected_columns):
|
79 |
+
return filter_columns(selected_columns)
|
80 |
+
columns_selector.change(update_dataframe, inputs=columns_selector, outputs=data_component)
|
81 |
+
|
82 |
+
with gr.TabItem("π¦· LDEK"):
|
83 |
+
gr.Markdown(LDEK_DESC)
|
84 |
+
columns_selector = gr.CheckboxGroup(
|
85 |
+
choices=ORDER_LIST_LDEK,
|
86 |
+
label="Select columns to display",
|
87 |
+
value=ORDER_LIST_LDEK,
|
88 |
+
)
|
89 |
+
data_component_ldek = gr.components.Dataframe(
|
90 |
+
value=LDEK_ACCS,
|
91 |
+
headers=COLUMN_HEADERS_LDEK,
|
92 |
+
type="pandas",
|
93 |
+
datatype=DATA_TYPES_LDEK,
|
94 |
+
interactive=False,
|
95 |
+
visible=True,
|
96 |
+
column_widths=[400] + [155] * 23
|
97 |
+
)
|
98 |
+
def update_dataframe(selected_columns):
|
99 |
+
return filter_columns_ldek(selected_columns)
|
100 |
+
columns_selector.change(update_dataframe, inputs=columns_selector, outputs=data_component_ldek)
|
101 |
+
|
102 |
+
|
103 |
+
with gr.TabItem("π©Ί LEK"):
|
104 |
+
gr.Markdown(LEK_DESC)
|
105 |
+
columns_selector = gr.CheckboxGroup(
|
106 |
+
choices=ORDER_LIST_LEK,
|
107 |
+
label="Select columns to display",
|
108 |
+
value=ORDER_LIST_LEK,
|
109 |
+
)
|
110 |
+
data_component_ldek = gr.components.Dataframe(
|
111 |
+
value=LEK_ACCS,
|
112 |
+
headers=COLUMN_HEADERS_LEK,
|
113 |
+
type="pandas",
|
114 |
+
datatype=DATA_TYPES_LEK,
|
115 |
+
interactive=False,
|
116 |
+
visible=True,
|
117 |
+
column_widths=[400] + [155] * 23
|
118 |
+
)
|
119 |
+
def update_dataframe(selected_columns):
|
120 |
+
return filter_columns_lek(selected_columns)
|
121 |
+
columns_selector.change(update_dataframe, inputs=columns_selector, outputs=data_component_ldek)
|
122 |
+
|
123 |
+
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Accordion("π Citation", open=False):
|
126 |
+
citation_button = gr.Textbox(
|
127 |
+
label=CITATION_LABEL,
|
128 |
+
value=CITATION_CONTENT,
|
129 |
+
lines=20,
|
130 |
+
elem_id="citation-button",
|
131 |
+
show_copy_button=True,
|
132 |
+
)
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
main.launch()
|
leaderboards/pes_accuracy.json
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model_name": "model-epfl-llm-meditron-7b",
|
4 |
+
"stomatologia dziecięca": 15.833333333333332,
|
5 |
+
"neurologia": 14.285714285714285,
|
6 |
+
"medycyna pracy": 17.796610169491526,
|
7 |
+
"medycyna rodzinna": 20.689655172413794,
|
8 |
+
"patomorfologia": 25.0,
|
9 |
+
"endokrynologia ginekologiczna i rozrodczosΜcΜ": 19.491525423728813,
|
10 |
+
"radiologia i diagnostyka obrazowa": 18.333333333333332,
|
11 |
+
"chirurgia szczękowo-twarzowa": 26.05042016806723,
|
12 |
+
"medycyna sportowa": 25.0,
|
13 |
+
"neonatologia": 25.423728813559322,
|
14 |
+
"ortopedia": 18.26086956521739,
|
15 |
+
"medycyna paliatywna": 20.0,
|
16 |
+
"chirurgia stomatologiczna": 16.94915254237288,
|
17 |
+
"neurologia dziecięca": 26.05042016806723,
|
18 |
+
"dermatologia i wenerologia": 15.966386554621847,
|
19 |
+
"diabetologia": 19.65811965811966,
|
20 |
+
"hematologia": 21.008403361344538,
|
21 |
+
"onkologia kliniczna": 21.367521367521366,
|
22 |
+
"protetyka stomatologiczna": 20.0,
|
23 |
+
"endokrynologia i diabetologia dziecięca": 21.008403361344538,
|
24 |
+
"neurochirurgia": 23.728813559322035,
|
25 |
+
"alergologia": 20.833333333333336,
|
26 |
+
"geriatria": 16.101694915254235,
|
27 |
+
"choroby wewnętrzne": 17.647058823529413,
|
28 |
+
"ginekologia onkologiczna": 13.445378151260504,
|
29 |
+
"otolaryngologia": 27.350427350427353,
|
30 |
+
"ortodoncja": 25.0,
|
31 |
+
"anestezjologia": 24.369747899159663,
|
32 |
+
"endokrynologia": 17.5,
|
33 |
+
"periodontologia": 11.76470588235294,
|
34 |
+
"psychiatria dzieci i mlodziezΜy": 19.166666666666668,
|
35 |
+
"psychiatria": 18.333333333333332,
|
36 |
+
"rehabilitacja medyczna": 16.94915254237288,
|
37 |
+
"perinatologia": 8.333333333333332,
|
38 |
+
"balneologia i medycyna fizykalna": 23.333333333333332,
|
39 |
+
"pediatria": 10.784313725490197,
|
40 |
+
"nefrologia": 22.5,
|
41 |
+
"choroby pΕuc": 18.103448275862068,
|
42 |
+
"choroby zakazΜne": 20.0,
|
43 |
+
"okulistyka": 17.094017094017094,
|
44 |
+
"kardiochirurgia": 14.166666666666666,
|
45 |
+
"chirurgia naczyniowa": 19.166666666666668,
|
46 |
+
"reumatologia": 18.96551724137931,
|
47 |
+
"chirurgia onkologiczna": 12.711864406779661,
|
48 |
+
"transplantologia kliniczna": 18.803418803418804,
|
49 |
+
"radioterapia onkologiczna": 26.666666666666668,
|
50 |
+
"gastroenterologia dziecięca": 14.166666666666666,
|
51 |
+
"kardiologia": 17.094017094017094,
|
52 |
+
"angiologia": 14.166666666666666,
|
53 |
+
"gastroenterologia": 17.543859649122805,
|
54 |
+
"chirurgia dziecięca": 16.80672268907563,
|
55 |
+
"hipertensjologia": 10.92436974789916,
|
56 |
+
"stomatologia zachowawcza": 26.05042016806723,
|
57 |
+
"chirurgia ogoΜlna": 19.166666666666668,
|
58 |
+
"choroby pΕuc dzieci": 24.166666666666668,
|
59 |
+
"poΕozΜnictwo i ginekologia": 21.666666666666668,
|
60 |
+
"medycyna ratunkowa": 19.626168224299064,
|
61 |
+
"nefrologia dzieciΔca": 20.168067226890756,
|
62 |
+
"endokrynologia ginekologiczna i rozrodczoΕΔ": 24.786324786324787,
|
63 |
+
"anestezjologia i intensywna terapia": 23.47826086956522,
|
64 |
+
"stomatologia dzieciΔca": 23.52941176470588,
|
65 |
+
"ortopedia i traumatologia narzΔ
du ruchu": 21.428571428571427,
|
66 |
+
"poΕoΕΌnictwo i ginekologia": 15.65217391304348,
|
67 |
+
"chirurgia szczΔkowo-twarzowa": 18.421052631578945,
|
68 |
+
"neurologia dzieciΔca": 23.52941176470588,
|
69 |
+
"choroby zakaΕΊne": 18.333333333333332,
|
70 |
+
"gastroenterologia dzieciΔca": 14.166666666666666,
|
71 |
+
"stomatologia zachowawcza z endodoncjΔ
": 19.491525423728813,
|
72 |
+
"endokrynologia i diabetologia dzieciΔca": 26.27118644067797,
|
73 |
+
"psychiatria dzieci i mΕodzieΕΌy": 16.94915254237288,
|
74 |
+
"chirurgia ogΓ³lna": 20.33898305084746,
|
75 |
+
"choroby wewnΔtrzne": 18.556701030927837,
|
76 |
+
"diagnostyka laboratoryjna": 30.508474576271187,
|
77 |
+
"chirurgia dzieciΔca": 22.88135593220339,
|
78 |
+
"otorynolaryngologia": 18.803418803418804,
|
79 |
+
"urologia dzieciΔca": 25.663716814159294,
|
80 |
+
"zdrowie publiczne": 20.168067226890756,
|
81 |
+
"genetyka kliniczna": 19.491525423728813,
|
82 |
+
"medycyna nuklearna": 23.076923076923077,
|
83 |
+
"kardiologia dzieciΔca": 15.789473684210526,
|
84 |
+
"chirurgia plastyczna": 20.0,
|
85 |
+
"chirurgia klatki piersiowej": 24.166666666666668,
|
86 |
+
"audiologia i foniatria": 18.421052631578945,
|
87 |
+
"intensywna terapia": 20.833333333333336,
|
88 |
+
"overall_accuracy": 19.74083822636161
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"model_name": "model-speakleash-Bielik-11B-v2.2-Instruct",
|
92 |
+
"stomatologia dziecięca": 40.833333333333336,
|
93 |
+
"neurologia": 48.739495798319325,
|
94 |
+
"medycyna pracy": 42.3728813559322,
|
95 |
+
"medycyna rodzinna": 43.103448275862064,
|
96 |
+
"patomorfologia": 50.83333333333333,
|
97 |
+
"endokrynologia ginekologiczna i rozrodczosΜcΜ": 32.20338983050847,
|
98 |
+
"radiologia i diagnostyka obrazowa": 46.666666666666664,
|
99 |
+
"chirurgia szczękowo-twarzowa": 25.210084033613445,
|
100 |
+
"medycyna sportowa": 57.49999999999999,
|
101 |
+
"neonatologia": 46.61016949152542,
|
102 |
+
"ortopedia": 41.73913043478261,
|
103 |
+
"medycyna paliatywna": 45.83333333333333,
|
104 |
+
"chirurgia stomatologiczna": 36.440677966101696,
|
105 |
+
"neurologia dziecięca": 45.378151260504204,
|
106 |
+
"dermatologia i wenerologia": 37.81512605042017,
|
107 |
+
"diabetologia": 31.62393162393162,
|
108 |
+
"hematologia": 33.61344537815126,
|
109 |
+
"onkologia kliniczna": 44.44444444444444,
|
110 |
+
"protetyka stomatologiczna": 36.666666666666664,
|
111 |
+
"endokrynologia i diabetologia dziecięca": 44.537815126050425,
|
112 |
+
"neurochirurgia": 27.966101694915253,
|
113 |
+
"alergologia": 36.666666666666664,
|
114 |
+
"geriatria": 45.76271186440678,
|
115 |
+
"choroby wewnętrzne": 46.21848739495798,
|
116 |
+
"ginekologia onkologiczna": 42.016806722689076,
|
117 |
+
"otolaryngologia": 33.33333333333333,
|
118 |
+
"ortodoncja": 31.25,
|
119 |
+
"anestezjologia": 51.26050420168067,
|
120 |
+
"endokrynologia": 33.33333333333333,
|
121 |
+
"periodontologia": 36.97478991596639,
|
122 |
+
"psychiatria dzieci i mlodziezΜy": 55.833333333333336,
|
123 |
+
"psychiatria": 36.666666666666664,
|
124 |
+
"rehabilitacja medyczna": 53.38983050847458,
|
125 |
+
"perinatologia": 34.166666666666664,
|
126 |
+
"balneologia i medycyna fizykalna": 41.66666666666667,
|
127 |
+
"pediatria": 48.03921568627451,
|
128 |
+
"nefrologia": 33.33333333333333,
|
129 |
+
"choroby pΕuc": 51.724137931034484,
|
130 |
+
"choroby zakazΜne": 45.0,
|
131 |
+
"okulistyka": 45.2991452991453,
|
132 |
+
"kardiochirurgia": 37.5,
|
133 |
+
"chirurgia naczyniowa": 45.83333333333333,
|
134 |
+
"reumatologia": 36.206896551724135,
|
135 |
+
"chirurgia onkologiczna": 44.06779661016949,
|
136 |
+
"transplantologia kliniczna": 33.33333333333333,
|
137 |
+
"radioterapia onkologiczna": 41.66666666666667,
|
138 |
+
"gastroenterologia dziecięca": 39.166666666666664,
|
139 |
+
"kardiologia": 40.17094017094017,
|
140 |
+
"angiologia": 46.666666666666664,
|
141 |
+
"gastroenterologia": 45.614035087719294,
|
142 |
+
"chirurgia dziecięca": 42.857142857142854,
|
143 |
+
"hipertensjologia": 51.26050420168067,
|
144 |
+
"stomatologia zachowawcza": 27.73109243697479,
|
145 |
+
"chirurgia ogoΜlna": 29.166666666666668,
|
146 |
+
"choroby pΕuc dzieci": 48.333333333333336,
|
147 |
+
"poΕozΜnictwo i ginekologia": 40.833333333333336,
|
148 |
+
"medycyna ratunkowa": 50.467289719626166,
|
149 |
+
"nefrologia dzieciΔca": 50.42016806722689,
|
150 |
+
"endokrynologia ginekologiczna i rozrodczoΕΔ": 41.02564102564102,
|
151 |
+
"anestezjologia i intensywna terapia": 39.130434782608695,
|
152 |
+
"stomatologia dzieciΔca": 32.773109243697476,
|
153 |
+
"ortopedia i traumatologia narzΔ
du ruchu": 40.17857142857143,
|
154 |
+
"poΕoΕΌnictwo i ginekologia": 42.608695652173914,
|
155 |
+
"chirurgia szczΔkowo-twarzowa": 27.192982456140353,
|
156 |
+
"neurologia dzieciΔca": 42.016806722689076,
|
157 |
+
"choroby zakaΕΊne": 40.0,
|
158 |
+
"gastroenterologia dzieciΔca": 42.5,
|
159 |
+
"stomatologia zachowawcza z endodoncjΔ
": 36.440677966101696,
|
160 |
+
"endokrynologia i diabetologia dzieciΔca": 33.89830508474576,
|
161 |
+
"psychiatria dzieci i mΕodzieΕΌy": 59.32203389830508,
|
162 |
+
"chirurgia ogΓ³lna": 46.61016949152542,
|
163 |
+
"choroby wewnΔtrzne": 38.144329896907216,
|
164 |
+
"diagnostyka laboratoryjna": 50.0,
|
165 |
+
"chirurgia dzieciΔca": 29.66101694915254,
|
166 |
+
"otorynolaryngologia": 41.88034188034188,
|
167 |
+
"urologia dzieciΔca": 35.39823008849557,
|
168 |
+
"zdrowie publiczne": 71.42857142857143,
|
169 |
+
"genetyka kliniczna": 38.13559322033898,
|
170 |
+
"medycyna nuklearna": 45.2991452991453,
|
171 |
+
"kardiologia dzieciΔca": 42.98245614035088,
|
172 |
+
"chirurgia plastyczna": 45.83333333333333,
|
173 |
+
"chirurgia klatki piersiowej": 39.166666666666664,
|
174 |
+
"audiologia i foniatria": 48.24561403508772,
|
175 |
+
"intensywna terapia": 44.166666666666664,
|
176 |
+
"overall_accuracy": 41.759465478841875
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"model_name": "model-meta-llama-Meta-Llama-3.1-8B-Instruct",
|
180 |
+
"stomatologia dziecięca": 27.500000000000004,
|
181 |
+
"neurologia": 50.42016806722689,
|
182 |
+
"medycyna pracy": 38.983050847457626,
|
183 |
+
"medycyna rodzinna": 35.3448275862069,
|
184 |
+
"patomorfologia": 46.666666666666664,
|
185 |
+
"endokrynologia ginekologiczna i rozrodczosΜcΜ": 27.11864406779661,
|
186 |
+
"radiologia i diagnostyka obrazowa": 40.833333333333336,
|
187 |
+
"chirurgia szczękowo-twarzowa": 26.89075630252101,
|
188 |
+
"medycyna sportowa": 45.0,
|
189 |
+
"neonatologia": 45.76271186440678,
|
190 |
+
"ortopedia": 40.0,
|
191 |
+
"medycyna paliatywna": 55.833333333333336,
|
192 |
+
"chirurgia stomatologiczna": 33.05084745762712,
|
193 |
+
"neurologia dziecięca": 38.655462184873954,
|
194 |
+
"dermatologia i wenerologia": 32.773109243697476,
|
195 |
+
"diabetologia": 41.88034188034188,
|
196 |
+
"hematologia": 41.17647058823529,
|
197 |
+
"onkologia kliniczna": 36.75213675213676,
|
198 |
+
"protetyka stomatologiczna": 38.333333333333336,
|
199 |
+
"endokrynologia i diabetologia dziecięca": 41.17647058823529,
|
200 |
+
"neurochirurgia": 27.966101694915253,
|
201 |
+
"alergologia": 37.5,
|
202 |
+
"geriatria": 44.91525423728814,
|
203 |
+
"choroby wewnętrzne": 47.05882352941176,
|
204 |
+
"ginekologia onkologiczna": 40.33613445378151,
|
205 |
+
"otolaryngologia": 26.495726495726498,
|
206 |
+
"ortodoncja": 27.67857142857143,
|
207 |
+
"anestezjologia": 48.739495798319325,
|
208 |
+
"endokrynologia": 30.833333333333336,
|
209 |
+
"periodontologia": 41.17647058823529,
|
210 |
+
"psychiatria dzieci i mlodziezΜy": 47.5,
|
211 |
+
"psychiatria": 32.5,
|
212 |
+
"rehabilitacja medyczna": 45.76271186440678,
|
213 |
+
"perinatologia": 36.666666666666664,
|
214 |
+
"balneologia i medycyna fizykalna": 38.333333333333336,
|
215 |
+
"pediatria": 39.21568627450981,
|
216 |
+
"nefrologia": 37.5,
|
217 |
+
"choroby pΕuc": 50.86206896551724,
|
218 |
+
"choroby zakazΜne": 44.166666666666664,
|
219 |
+
"okulistyka": 43.58974358974359,
|
220 |
+
"kardiochirurgia": 43.333333333333336,
|
221 |
+
"chirurgia naczyniowa": 35.833333333333336,
|
222 |
+
"reumatologia": 36.206896551724135,
|
223 |
+
"chirurgia onkologiczna": 37.28813559322034,
|
224 |
+
"transplantologia kliniczna": 32.47863247863248,
|
225 |
+
"radioterapia onkologiczna": 35.833333333333336,
|
226 |
+
"gastroenterologia dziecięca": 40.833333333333336,
|
227 |
+
"kardiologia": 37.60683760683761,
|
228 |
+
"angiologia": 40.833333333333336,
|
229 |
+
"gastroenterologia": 39.473684210526315,
|
230 |
+
"chirurgia dziecięca": 31.092436974789916,
|
231 |
+
"hipertensjologia": 46.21848739495798,
|
232 |
+
"stomatologia zachowawcza": 37.81512605042017,
|
233 |
+
"chirurgia ogoΜlna": 25.0,
|
234 |
+
"choroby pΕuc dzieci": 37.5,
|
235 |
+
"poΕozΜnictwo i ginekologia": 36.666666666666664,
|
236 |
+
"medycyna ratunkowa": 50.467289719626166,
|
237 |
+
"nefrologia dzieciΔca": 43.69747899159664,
|
238 |
+
"endokrynologia ginekologiczna i rozrodczoΕΔ": 42.73504273504273,
|
239 |
+
"anestezjologia i intensywna terapia": 36.52173913043478,
|
240 |
+
"stomatologia dzieciΔca": 31.092436974789916,
|
241 |
+
"ortopedia i traumatologia narzΔ
du ruchu": 38.392857142857146,
|
242 |
+
"poΕoΕΌnictwo i ginekologia": 39.130434782608695,
|
243 |
+
"chirurgia szczΔkowo-twarzowa": 26.31578947368421,
|
244 |
+
"neurologia dzieciΔca": 41.17647058823529,
|
245 |
+
"choroby zakaΕΊne": 30.0,
|
246 |
+
"gastroenterologia dzieciΔca": 38.333333333333336,
|
247 |
+
"stomatologia zachowawcza z endodoncjΔ
": 27.11864406779661,
|
248 |
+
"endokrynologia i diabetologia dzieciΔca": 38.983050847457626,
|
249 |
+
"psychiatria dzieci i mΕodzieΕΌy": 51.69491525423729,
|
250 |
+
"chirurgia ogΓ³lna": 41.52542372881356,
|
251 |
+
"choroby wewnΔtrzne": 43.29896907216495,
|
252 |
+
"diagnostyka laboratoryjna": 48.30508474576271,
|
253 |
+
"chirurgia dzieciΔca": 33.05084745762712,
|
254 |
+
"otorynolaryngologia": 36.75213675213676,
|
255 |
+
"urologia dzieciΔca": 35.39823008849557,
|
256 |
+
"zdrowie publiczne": 61.34453781512605,
|
257 |
+
"genetyka kliniczna": 46.61016949152542,
|
258 |
+
"medycyna nuklearna": 43.58974358974359,
|
259 |
+
"kardiologia dzieciΔca": 42.98245614035088,
|
260 |
+
"chirurgia plastyczna": 45.0,
|
261 |
+
"chirurgia klatki piersiowej": 35.833333333333336,
|
262 |
+
"audiologia i foniatria": 47.368421052631575,
|
263 |
+
"intensywna terapia": 45.0,
|
264 |
+
"overall_accuracy": 39.380441384895725
|
265 |
+
}
|
266 |
+
]
|
leaderboards/r_ldek_report_scores.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model_name": "model-epfl-llm-meditron-7b",
|
4 |
+
"2008_jesienΜ": 22.727272727272727,
|
5 |
+
"2012_wiosna": 23.711340206185564,
|
6 |
+
"2010_jesienΜ": 19.597989949748744,
|
7 |
+
"2009_wiosna": 16.161616161616163,
|
8 |
+
"2010_wiosna": 16.0,
|
9 |
+
"2011_wiosna": 19.696969696969695,
|
10 |
+
"2012_jesienΜ": 23.46938775510204,
|
11 |
+
"2011_jesienΜ": 24.747474747474747,
|
12 |
+
"2009_jesienΜ": 18.5,
|
13 |
+
"2022_wiosna": 22.727272727272727,
|
14 |
+
"2014_wiosna": 17.346938775510203,
|
15 |
+
"2022_jesien": 22.75132275132275,
|
16 |
+
"2014_jesien": 16.580310880829018,
|
17 |
+
"2024_wiosna": 22.916666666666664,
|
18 |
+
"2015_wiosna": 19.35483870967742,
|
19 |
+
"2023_wiosna": 21.025641025641026,
|
20 |
+
"2021_jesien": 24.873096446700508,
|
21 |
+
"2015_jesien": 18.947368421052634,
|
22 |
+
"2023_jesien": 22.164948453608247,
|
23 |
+
"2021_wiosna": 24.489795918367346,
|
24 |
+
"2013_wiosna": 18.04123711340206,
|
25 |
+
"2013_jesien": 17.894736842105264,
|
26 |
+
"overall_accuracy": 20.624563038918666
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"model_name": "model-speakleash-Bielik-11B-v2.2-Instruct",
|
30 |
+
"2008_jesienΜ": 45.45454545454545,
|
31 |
+
"2012_wiosna": 46.391752577319586,
|
32 |
+
"2010_jesienΜ": 52.26130653266332,
|
33 |
+
"2009_wiosna": 51.515151515151516,
|
34 |
+
"2010_wiosna": 48.5,
|
35 |
+
"2011_wiosna": 41.91919191919192,
|
36 |
+
"2012_jesienΜ": 57.6530612244898,
|
37 |
+
"2011_jesienΜ": 45.95959595959596,
|
38 |
+
"2009_jesienΜ": 49.5,
|
39 |
+
"2022_wiosna": 40.4040404040404,
|
40 |
+
"2014_wiosna": 34.69387755102041,
|
41 |
+
"2022_jesien": 43.91534391534391,
|
42 |
+
"2014_jesien": 44.04145077720207,
|
43 |
+
"2024_wiosna": 51.041666666666664,
|
44 |
+
"2015_wiosna": 43.54838709677419,
|
45 |
+
"2023_wiosna": 42.05128205128205,
|
46 |
+
"2021_jesien": 44.16243654822335,
|
47 |
+
"2015_jesien": 40.0,
|
48 |
+
"2023_jesien": 38.144329896907216,
|
49 |
+
"2021_wiosna": 50.0,
|
50 |
+
"2013_wiosna": 47.93814432989691,
|
51 |
+
"2013_jesien": 43.15789473684211,
|
52 |
+
"overall_accuracy": 45.583780004660916
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"model_name": "model-meta-llama-Meta-Llama-3.1-8B-Instruct",
|
56 |
+
"2008_jesienΜ": 41.41414141414141,
|
57 |
+
"2012_wiosna": 41.23711340206185,
|
58 |
+
"2010_jesienΜ": 43.21608040201005,
|
59 |
+
"2009_wiosna": 47.97979797979798,
|
60 |
+
"2010_wiosna": 46.5,
|
61 |
+
"2011_wiosna": 33.33333333333333,
|
62 |
+
"2012_jesienΜ": 48.46938775510204,
|
63 |
+
"2011_jesienΜ": 41.41414141414141,
|
64 |
+
"2009_jesienΜ": 54.50000000000001,
|
65 |
+
"2022_wiosna": 40.4040404040404,
|
66 |
+
"2014_wiosna": 33.6734693877551,
|
67 |
+
"2022_jesien": 41.7989417989418,
|
68 |
+
"2014_jesien": 42.487046632124354,
|
69 |
+
"2024_wiosna": 39.0625,
|
70 |
+
"2015_wiosna": 42.473118279569896,
|
71 |
+
"2023_wiosna": 45.64102564102564,
|
72 |
+
"2021_jesien": 40.609137055837564,
|
73 |
+
"2015_jesien": 41.578947368421055,
|
74 |
+
"2023_jesien": 42.2680412371134,
|
75 |
+
"2021_wiosna": 41.3265306122449,
|
76 |
+
"2013_wiosna": 41.23711340206185,
|
77 |
+
"2013_jesien": 45.78947368421053,
|
78 |
+
"overall_accuracy": 42.57748776508972
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"model_name": "model-meta-llama-Meta-Llama-3.1-70B-Instruct",
|
82 |
+
"2008_jesienΜ": 62.121212121212125,
|
83 |
+
"2012_wiosna": 61.34020618556701,
|
84 |
+
"2010_jesienΜ": 62.8140703517588,
|
85 |
+
"2009_wiosna": 69.1919191919192,
|
86 |
+
"2010_wiosna": 73.0,
|
87 |
+
"2011_wiosna": 59.59595959595959,
|
88 |
+
"2012_jesienΜ": 69.89795918367348,
|
89 |
+
"2011_jesienΜ": 65.65656565656566,
|
90 |
+
"2009_jesienΜ": 68.0,
|
91 |
+
"2022_wiosna": 68.68686868686868,
|
92 |
+
"2014_wiosna": 54.59183673469388,
|
93 |
+
"2022_jesien": 64.02116402116403,
|
94 |
+
"2014_jesien": 60.62176165803109,
|
95 |
+
"2024_wiosna": 61.979166666666664,
|
96 |
+
"2015_wiosna": 60.215053763440864,
|
97 |
+
"2023_wiosna": 63.07692307692307,
|
98 |
+
"2021_jesien": 63.95939086294417,
|
99 |
+
"2015_jesien": 58.42105263157895,
|
100 |
+
"2023_jesien": 61.34020618556701,
|
101 |
+
"2021_wiosna": 68.36734693877551,
|
102 |
+
"2013_wiosna": 62.371134020618555,
|
103 |
+
"2013_jesien": 57.36842105263158,
|
104 |
+
"overall_accuracy": 63.528315078070385
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"model_name": "model-mistralai-Mistral-Large-Instruct-2407",
|
108 |
+
"2008_jesienΜ": 61.61616161616161,
|
109 |
+
"2012_wiosna": 54.123711340206185,
|
110 |
+
"2010_jesienΜ": 62.311557788944725,
|
111 |
+
"2009_wiosna": 67.67676767676768,
|
112 |
+
"2010_wiosna": 69.5,
|
113 |
+
"2011_wiosna": 56.56565656565656,
|
114 |
+
"2012_jesienΜ": 66.3265306122449,
|
115 |
+
"2011_jesienΜ": 58.080808080808076,
|
116 |
+
"2009_jesienΜ": 63.0,
|
117 |
+
"2022_wiosna": 54.54545454545454,
|
118 |
+
"2014_wiosna": 54.08163265306123,
|
119 |
+
"2022_jesien": 57.14285714285714,
|
120 |
+
"2014_jesien": 56.476683937823836,
|
121 |
+
"2024_wiosna": 56.770833333333336,
|
122 |
+
"2015_wiosna": 58.602150537634415,
|
123 |
+
"2023_wiosna": 57.948717948717956,
|
124 |
+
"2021_jesien": 55.83756345177665,
|
125 |
+
"2015_jesien": 60.0,
|
126 |
+
"2023_jesien": 48.45360824742268,
|
127 |
+
"2021_wiosna": 57.14285714285714,
|
128 |
+
"2013_wiosna": 61.34020618556701,
|
129 |
+
"2013_jesien": 55.78947368421052,
|
130 |
+
"overall_accuracy": 58.820787695175945
|
131 |
+
}
|
132 |
+
]
|
leaderboards/r_lek_report_scores.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model_name": "model-epfl-llm-meditron-7b",
|
4 |
+
"2011_wiosna": 19.696969696969695,
|
5 |
+
"2010_wiosna": 26.5,
|
6 |
+
"2008_jesienΜ": 23.85786802030457,
|
7 |
+
"2011_jesienΜ": 23.232323232323232,
|
8 |
+
"2009_jesienΜ": 22.33502538071066,
|
9 |
+
"2010_jesienΜ": 19.696969696969695,
|
10 |
+
"2012_wiosna": 24.5,
|
11 |
+
"2009_wiosna": 24.120603015075375,
|
12 |
+
"2012_jesienΜ": 19.897959183673468,
|
13 |
+
"2022_wiosna": 19.3717277486911,
|
14 |
+
"2014_wiosna": 20.0,
|
15 |
+
"2022_jesien": 28.654970760233915,
|
16 |
+
"2014_jesien": 23.958333333333336,
|
17 |
+
"2024_wiosna": 23.809523809523807,
|
18 |
+
"2015_wiosna": 18.781725888324875,
|
19 |
+
"2023_wiosna": 20.46783625730994,
|
20 |
+
"2021_jesien": 19.170984455958546,
|
21 |
+
"2015_jesien": 22.22222222222222,
|
22 |
+
"2023_jesien": 23.4375,
|
23 |
+
"2021_wiosna": 15.656565656565657,
|
24 |
+
"2013_wiosna": 16.145833333333336,
|
25 |
+
"2013_jesien": 21.465968586387437,
|
26 |
+
"overall_accuracy": 21.64338148235851
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"model_name": "model-speakleash-Bielik-11B-v2.2-Instruct",
|
30 |
+
"2011_wiosna": 59.59595959595959,
|
31 |
+
"2010_wiosna": 62.0,
|
32 |
+
"2008_jesienΜ": 59.89847715736041,
|
33 |
+
"2011_jesienΜ": 60.1010101010101,
|
34 |
+
"2009_jesienΜ": 58.37563451776649,
|
35 |
+
"2010_jesienΜ": 63.13131313131313,
|
36 |
+
"2012_wiosna": 61.0,
|
37 |
+
"2009_wiosna": 63.31658291457286,
|
38 |
+
"2012_jesienΜ": 63.26530612244898,
|
39 |
+
"2022_wiosna": 58.63874345549738,
|
40 |
+
"2014_wiosna": 57.948717948717956,
|
41 |
+
"2022_jesien": 69.00584795321637,
|
42 |
+
"2014_jesien": 63.541666666666664,
|
43 |
+
"2024_wiosna": 66.07142857142857,
|
44 |
+
"2015_wiosna": 59.390862944162436,
|
45 |
+
"2023_wiosna": 66.08187134502924,
|
46 |
+
"2021_jesien": 62.17616580310881,
|
47 |
+
"2015_jesien": 61.904761904761905,
|
48 |
+
"2023_jesien": 63.541666666666664,
|
49 |
+
"2021_wiosna": 65.15151515151516,
|
50 |
+
"2013_wiosna": 61.458333333333336,
|
51 |
+
"2013_jesien": 61.78010471204188,
|
52 |
+
"overall_accuracy": 62.064882784750175
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"model_name": "model-meta-llama-Meta-Llama-3.1-8B-Instruct",
|
56 |
+
"2011_wiosna": 52.02020202020202,
|
57 |
+
"2010_wiosna": 53.5,
|
58 |
+
"2008_jesienΜ": 50.25380710659898,
|
59 |
+
"2011_jesienΜ": 57.07070707070707,
|
60 |
+
"2009_jesienΜ": 45.68527918781726,
|
61 |
+
"2010_jesienΜ": 43.93939393939394,
|
62 |
+
"2012_wiosna": 54.0,
|
63 |
+
"2009_wiosna": 45.22613065326633,
|
64 |
+
"2012_jesienΜ": 53.06122448979592,
|
65 |
+
"2022_wiosna": 45.54973821989529,
|
66 |
+
"2014_wiosna": 52.307692307692314,
|
67 |
+
"2022_jesien": 53.80116959064327,
|
68 |
+
"2014_jesien": 54.166666666666664,
|
69 |
+
"2024_wiosna": 57.14285714285714,
|
70 |
+
"2015_wiosna": 54.82233502538071,
|
71 |
+
"2023_wiosna": 53.216374269005854,
|
72 |
+
"2021_jesien": 51.813471502590666,
|
73 |
+
"2015_jesien": 44.44444444444444,
|
74 |
+
"2023_jesien": 50.0,
|
75 |
+
"2021_wiosna": 47.97979797979798,
|
76 |
+
"2013_wiosna": 54.6875,
|
77 |
+
"2013_jesien": 51.832460732984295,
|
78 |
+
"overall_accuracy": 51.148472649775044
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"model_name": "model-meta-llama-Meta-Llama-3.1-70B-Instruct",
|
82 |
+
"2011_wiosna": 77.27272727272727,
|
83 |
+
"2010_wiosna": 82.0,
|
84 |
+
"2008_jesienΜ": 79.69543147208121,
|
85 |
+
"2011_jesienΜ": 83.33333333333334,
|
86 |
+
"2009_jesienΜ": 81.21827411167513,
|
87 |
+
"2010_jesienΜ": 80.8080808080808,
|
88 |
+
"2012_wiosna": 80.0,
|
89 |
+
"2009_wiosna": 72.8643216080402,
|
90 |
+
"2012_jesienΜ": 81.12244897959184,
|
91 |
+
"2022_wiosna": 79.05759162303664,
|
92 |
+
"2014_wiosna": 76.41025641025641,
|
93 |
+
"2022_jesien": 82.45614035087719,
|
94 |
+
"2014_jesien": 87.5,
|
95 |
+
"2024_wiosna": 86.90476190476191,
|
96 |
+
"2015_wiosna": 77.66497461928934,
|
97 |
+
"2023_wiosna": 80.7017543859649,
|
98 |
+
"2021_jesien": 81.34715025906736,
|
99 |
+
"2015_jesien": 78.83597883597884,
|
100 |
+
"2023_jesien": 83.33333333333334,
|
101 |
+
"2021_wiosna": 84.84848484848484,
|
102 |
+
"2013_wiosna": 77.60416666666666,
|
103 |
+
"2013_jesien": 78.01047120418848,
|
104 |
+
"overall_accuracy": 80.53516457494672
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"model_name": "model-mistralai-Mistral-Large-Instruct-2407",
|
108 |
+
"2011_wiosna": 76.26262626262627,
|
109 |
+
"2010_wiosna": 76.5,
|
110 |
+
"2008_jesienΜ": 76.6497461928934,
|
111 |
+
"2011_jesienΜ": 79.29292929292929,
|
112 |
+
"2009_jesienΜ": 71.57360406091371,
|
113 |
+
"2010_jesienΜ": 74.24242424242425,
|
114 |
+
"2012_wiosna": 77.5,
|
115 |
+
"2009_wiosna": 72.8643216080402,
|
116 |
+
"2012_jesienΜ": 76.53061224489795,
|
117 |
+
"2022_wiosna": 73.29842931937172,
|
118 |
+
"2014_wiosna": 80.0,
|
119 |
+
"2022_jesien": 77.19298245614034,
|
120 |
+
"2014_jesien": 76.5625,
|
121 |
+
"2024_wiosna": 87.5,
|
122 |
+
"2015_wiosna": 75.1269035532995,
|
123 |
+
"2023_wiosna": 80.11695906432749,
|
124 |
+
"2021_jesien": 76.16580310880829,
|
125 |
+
"2015_jesien": 71.42857142857143,
|
126 |
+
"2023_jesien": 76.5625,
|
127 |
+
"2021_wiosna": 79.29292929292929,
|
128 |
+
"2013_wiosna": 71.875,
|
129 |
+
"2013_jesien": 75.91623036649214,
|
130 |
+
"overall_accuracy": 76.39119109637699
|
131 |
+
}
|
132 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler
|
2 |
+
black
|
3 |
+
datasets
|
4 |
+
gradio
|
5 |
+
gradio[oauth]
|
6 |
+
gradio_leaderboard==0.0.9
|
7 |
+
gradio_client
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib
|
10 |
+
numpy
|
11 |
+
pandas
|
12 |
+
python-dateutil
|
13 |
+
tqdm
|
14 |
+
transformers
|
15 |
+
tokenizers>=0.15.0
|
16 |
+
sentencepiece
|
src/abouts.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
HEADER_TITLE = """
|
2 |
+
<div style="display: flex; flex-wrap: wrap; justify-content: space-around; align-items: center;">
|
3 |
+
<div>
|
4 |
+
<h1 align="center" id="space-title">Adam Mickiewicz University's Center for Artificial Intelligence</h1>
|
5 |
+
<h2 align="center" id="space-subtitle">LLMs medical benchmark</h2>
|
6 |
+
</div>
|
7 |
+
</div>
|
8 |
+
"""
|
9 |
+
|
10 |
+
LEADERBOARD_DESC = """## Test
|
11 |
+
"""
|
12 |
+
|
13 |
+
PES_DESC = """## ...
|
14 |
+
"""
|
15 |
+
|
16 |
+
LDEK_DESC = """## ...
|
17 |
+
"""
|
18 |
+
|
19 |
+
LEK_DESC = """## ...
|
20 |
+
"""
|
21 |
+
|
22 |
+
CITATION_LABEL = "TEST_LABEL"
|
23 |
+
|
24 |
+
CITATION_CONTENT = "CONTENT"
|
src/envs.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
OWNER = "MCiesiolka" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
# ----------------------------------
|
11 |
+
|
12 |
+
REPO_ID = f"{OWNER}/test_leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/results"
|
15 |
+
|
16 |
+
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
# Local caches
|
20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
+
|
25 |
+
API = HfApi(token=TOKEN)
|
src/images/logo.png
ADDED
src/structures/all_structure.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
abs_path = Path(__file__).parent.parent.parent
|
5 |
+
|
6 |
+
def replace_models_names(model_name):
|
7 |
+
replaces = {'meta-llama': 'meta_llama',
|
8 |
+
'epfl-llm':'epfl_llm',
|
9 |
+
'01-ai':'01_ai'}
|
10 |
+
new_name = model_name.replace('model-', '')
|
11 |
+
for k, v in replaces.items():
|
12 |
+
if new_name.startswith(k):
|
13 |
+
new_name = new_name.replace(k, v)
|
14 |
+
new_name = new_name.replace('-','/',1)
|
15 |
+
new_name = new_name.replace('_','-',1)
|
16 |
+
new_name = f"[{new_name}](https://huggingface.co/{new_name})"
|
17 |
+
return new_name
|
18 |
+
|
19 |
+
def load_json_data(file_path):
|
20 |
+
ALL_ACCS = pd.read_json(file_path)
|
21 |
+
|
22 |
+
for column in ALL_ACCS.columns:
|
23 |
+
if ALL_ACCS[column].apply(type).eq(dict).any():
|
24 |
+
ALL_ACCS[column] = ALL_ACCS[column].apply(str)
|
25 |
+
|
26 |
+
for column in ALL_ACCS.select_dtypes(include='number').columns:
|
27 |
+
ALL_ACCS[column] = ALL_ACCS[column].round(2)
|
28 |
+
|
29 |
+
return ALL_ACCS
|
30 |
+
|
31 |
+
file_paths = [
|
32 |
+
str(abs_path / "leaderboards/pes_accuracy.json"),
|
33 |
+
str(abs_path / "leaderboards/r_ldek_report_scores.json"),
|
34 |
+
str(abs_path / "leaderboards/r_lek_report_scores.json"),
|
35 |
+
]
|
36 |
+
|
37 |
+
model_data = {}
|
38 |
+
|
39 |
+
for file_path in file_paths:
|
40 |
+
ALL_ACCS = load_json_data(file_path)
|
41 |
+
|
42 |
+
for _, row in ALL_ACCS.iterrows():
|
43 |
+
model_name = replace_models_names(row["model_name"])
|
44 |
+
overall_accuracy = row["overall_accuracy"]
|
45 |
+
|
46 |
+
if model_name not in model_data:
|
47 |
+
model_data[model_name] = {"model_name": model_name}
|
48 |
+
|
49 |
+
file_key = file_path.split("/")[-1].replace(".json", "") # Use file name as key
|
50 |
+
model_data[model_name][f"overall_acc_from_{file_key}"] = overall_accuracy
|
51 |
+
|
52 |
+
ALL_ACCS = pd.DataFrame(list(model_data.values()))
|
53 |
+
ALL_ACCS=ALL_ACCS.rename(columns={'overall_acc_from_pes_accuracy':'PES',
|
54 |
+
'overall_acc_from_r_ldek_report_scores':'LDEK',
|
55 |
+
'overall_acc_from_r_lek_report_scores':'LEK'})
|
56 |
+
|
57 |
+
ALL_ACCS['Average'] = ALL_ACCS[['PES', 'LDEK', 'LEK']].mean(axis=1).round(2)
|
58 |
+
columns = list(ALL_ACCS.columns)
|
59 |
+
columns.insert(1, columns.pop(columns.index('Average')))
|
60 |
+
ALL_ACCS = ALL_ACCS[columns]
|
61 |
+
STYLED = ALL_ACCS.style.highlight_max(
|
62 |
+
color = '#ff7070',
|
63 |
+
subset=ALL_ACCS.columns[-4:]).format(precision=2)
|
src/structures/ldek_structure.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
abs_path = Path(__file__).parent.parent.parent
|
5 |
+
|
6 |
+
def replace_models_names(model_name):
|
7 |
+
replaces = {'meta-llama': 'meta_llama',
|
8 |
+
'epfl-llm':'epfl_llm',
|
9 |
+
'01-ai':'01_ai'}
|
10 |
+
new_name = model_name.replace('model-', '')
|
11 |
+
for k, v in replaces.items():
|
12 |
+
if new_name.startswith(k):
|
13 |
+
new_name = new_name.replace(k, v)
|
14 |
+
new_name = new_name.replace('-','/',1)
|
15 |
+
new_name = new_name.replace('_','-',1)
|
16 |
+
new_name = f"[{new_name}](https://huggingface.co/{new_name})"
|
17 |
+
return new_name
|
18 |
+
|
19 |
+
def generate_ORDER_LIST_LDEK_and_data_types(json_data):
|
20 |
+
ORDER_LIST_LDEK = ["model_name", "overall_accuracy"]
|
21 |
+
data_types = ["markdown", "number"]
|
22 |
+
|
23 |
+
for key in json_data.keys():
|
24 |
+
if key not in ["model_name", "overall_accuracy"]:
|
25 |
+
ORDER_LIST_LDEK.append(key)
|
26 |
+
data_types.append("number")
|
27 |
+
ORDER_LIST_LDEK[2:] = sorted(ORDER_LIST_LDEK[2:])
|
28 |
+
return ORDER_LIST_LDEK, data_types
|
29 |
+
|
30 |
+
def filter_columns_ldek(column_choices):
|
31 |
+
selected_columns = [col for col in ORDER_LIST_LDEK if col in column_choices]
|
32 |
+
return LDEK_ACCS[selected_columns]
|
33 |
+
|
34 |
+
def load_json_data(file_path, ORDER_LIST_LDEK):
|
35 |
+
LDEK_ACCS = pd.read_json(file_path)
|
36 |
+
for column in LDEK_ACCS.columns:
|
37 |
+
if LDEK_ACCS[column].apply(type).eq(dict).any():
|
38 |
+
LDEK_ACCS[column] = LDEK_ACCS[column].apply(str)
|
39 |
+
|
40 |
+
LDEK_ACCS["model_name"] = LDEK_ACCS["model_name"].apply(
|
41 |
+
lambda name: replace_models_names(name)
|
42 |
+
)
|
43 |
+
|
44 |
+
for column in LDEK_ACCS.select_dtypes(include='number').columns:
|
45 |
+
LDEK_ACCS[column] = LDEK_ACCS[column].round(2)
|
46 |
+
ordered_columns = [col for col in ORDER_LIST_LDEK if col in LDEK_ACCS.columns]
|
47 |
+
LDEK_ACCS = LDEK_ACCS[ordered_columns]
|
48 |
+
|
49 |
+
if "Score" in LDEK_ACCS.columns:
|
50 |
+
LDEK_ACCS = LDEK_ACCS.sort_values(by="Score", ascending=False)
|
51 |
+
|
52 |
+
return LDEK_ACCS
|
53 |
+
|
54 |
+
|
55 |
+
file_path = str(abs_path / "leaderboards/r_ldek_report_scores.json")
|
56 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
57 |
+
sample_data = pd.read_json(file_path).iloc[0].to_dict() # Load the first row as a dict
|
58 |
+
|
59 |
+
ORDER_LIST_LDEK, DATA_TYPES_LDEK = generate_ORDER_LIST_LDEK_and_data_types(sample_data)
|
60 |
+
LDEK_ACCS = load_json_data(file_path, ORDER_LIST_LDEK)
|
61 |
+
# LDEK_ACCS = LDEK_ACCS.style.highlight_max(
|
62 |
+
# color = '#ff7070',
|
63 |
+
# subset=LDEK_ACCS.columns[1:]).format(precision=2)
|
64 |
+
COLUMN_HEADERS_LDEK = ORDER_LIST_LDEK
|
65 |
+
|
66 |
+
print(ORDER_LIST_LDEK)
|
src/structures/lek_structure.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
abs_path = Path(__file__).parent.parent.parent
|
5 |
+
|
6 |
+
def replace_models_names(model_name):
|
7 |
+
replaces = {'meta-llama': 'meta_llama',
|
8 |
+
'epfl-llm':'epfl_llm',
|
9 |
+
'01-ai':'01_ai'}
|
10 |
+
new_name = model_name.replace('model-', '')
|
11 |
+
for k, v in replaces.items():
|
12 |
+
if new_name.startswith(k):
|
13 |
+
new_name = new_name.replace(k, v)
|
14 |
+
new_name = new_name.replace('-','/',1)
|
15 |
+
new_name = new_name.replace('_','-',1)
|
16 |
+
new_name = f"[{new_name}](https://huggingface.co/{new_name})"
|
17 |
+
return new_name
|
18 |
+
|
19 |
+
def generate_ORDER_LIST_LEK_and_data_types(json_data):
|
20 |
+
ORDER_LIST_LEK = ["model_name", "overall_accuracy"]
|
21 |
+
data_types = ["markdown", "number"]
|
22 |
+
|
23 |
+
for key in json_data.keys():
|
24 |
+
if key not in ["model_name", "overall_accuracy"]:
|
25 |
+
ORDER_LIST_LEK.append(key)
|
26 |
+
data_types.append("number")
|
27 |
+
ORDER_LIST_LEK[2:] = sorted(ORDER_LIST_LEK[2:])
|
28 |
+
return ORDER_LIST_LEK, data_types
|
29 |
+
|
30 |
+
def filter_columns_lek(column_choices):
|
31 |
+
selected_columns = [col for col in ORDER_LIST_LEK if col in column_choices]
|
32 |
+
return LEK_ACCS[selected_columns]
|
33 |
+
|
34 |
+
def load_json_data(file_path, ORDER_LIST_LEK):
|
35 |
+
LEK_ACCS = pd.read_json(file_path)
|
36 |
+
for column in LEK_ACCS.columns:
|
37 |
+
if LEK_ACCS[column].apply(type).eq(dict).any():
|
38 |
+
LEK_ACCS[column] = LEK_ACCS[column].apply(str)
|
39 |
+
|
40 |
+
LEK_ACCS["model_name"] = LEK_ACCS["model_name"].apply(
|
41 |
+
lambda name: replace_models_names(name)
|
42 |
+
)
|
43 |
+
|
44 |
+
for column in LEK_ACCS.select_dtypes(include='number').columns:
|
45 |
+
LEK_ACCS[column] = LEK_ACCS[column].round(2)
|
46 |
+
ordered_columns = [col for col in ORDER_LIST_LEK if col in LEK_ACCS.columns]
|
47 |
+
LEK_ACCS = LEK_ACCS[ordered_columns]
|
48 |
+
|
49 |
+
if "Score" in LEK_ACCS.columns:
|
50 |
+
LEK_ACCS = LEK_ACCS.sort_values(by="Score", ascending=False)
|
51 |
+
|
52 |
+
return LEK_ACCS
|
53 |
+
|
54 |
+
|
55 |
+
file_path = str(abs_path / "leaderboards/r_lek_report_scores.json")
|
56 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
57 |
+
sample_data = pd.read_json(file_path).iloc[0].to_dict() # Load the first row as a dict
|
58 |
+
|
59 |
+
ORDER_LIST_LEK, DATA_TYPES_LEK = generate_ORDER_LIST_LEK_and_data_types(sample_data)
|
60 |
+
LEK_ACCS = load_json_data(file_path, ORDER_LIST_LEK)
|
61 |
+
# LEK_ACCS = LEK_ACCS.reindex(sorted(LEK_ACCS.columns), axis=1)
|
62 |
+
COLUMN_HEADERS_LEK = ORDER_LIST_LEK
|
63 |
+
|
64 |
+
print(ORDER_LIST_LEK)
|
src/structures/pes_structure.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
abs_path = Path(__file__).parent.parent.parent
|
5 |
+
|
6 |
+
def replace_models_names(model_name):
|
7 |
+
replaces = {'meta-llama': 'meta_llama',
|
8 |
+
'epfl-llm':'epfl_llm',
|
9 |
+
'01-ai':'01_ai'}
|
10 |
+
new_name = model_name.replace('model-', '')
|
11 |
+
for k, v in replaces.items():
|
12 |
+
if new_name.startswith(k):
|
13 |
+
new_name = new_name.replace(k, v)
|
14 |
+
new_name = new_name.replace('-','/',1)
|
15 |
+
new_name = new_name.replace('_','-',1)
|
16 |
+
new_name = f"[{new_name}](https://huggingface.co/{new_name})"
|
17 |
+
return new_name
|
18 |
+
|
19 |
+
|
20 |
+
def generate_order_list_and_data_types(json_data):
|
21 |
+
order_list = ["model_name", "overall_accuracy"]
|
22 |
+
data_types = ["markdown", "number"]
|
23 |
+
|
24 |
+
for key in json_data.keys():
|
25 |
+
if key not in ["model_name", "overall_accuracy"]:
|
26 |
+
order_list.append(key)
|
27 |
+
data_types.append("number")
|
28 |
+
order_list[2:] = sorted(order_list[2:])
|
29 |
+
return order_list, data_types
|
30 |
+
|
31 |
+
def filter_data(selected_columns, search_query):
|
32 |
+
df = PES_ACCS[selected_columns]
|
33 |
+
if search_query:
|
34 |
+
df = df[df['model_name'].str.contains(search_query, case=False, na=False)]
|
35 |
+
return df
|
36 |
+
|
37 |
+
def filter_columns(column_choices):
|
38 |
+
selected_columns = [col for col in ORDER_LIST if col in column_choices]
|
39 |
+
return PES_ACCS[selected_columns]
|
40 |
+
|
41 |
+
def load_json_data(file_path, order_list):
|
42 |
+
PES_ACCS = pd.read_json(file_path)
|
43 |
+
for column in PES_ACCS.columns:
|
44 |
+
if PES_ACCS[column].apply(type).eq(dict).any():
|
45 |
+
PES_ACCS[column] = PES_ACCS[column].apply(str)
|
46 |
+
|
47 |
+
PES_ACCS["model_name"] = PES_ACCS["model_name"].apply(
|
48 |
+
lambda name: replace_models_names(name)
|
49 |
+
)
|
50 |
+
|
51 |
+
for column in PES_ACCS.select_dtypes(include='number').columns:
|
52 |
+
PES_ACCS[column] = PES_ACCS[column].round(2)
|
53 |
+
ordered_columns = [col for col in order_list if col in PES_ACCS.columns]
|
54 |
+
PES_ACCS = PES_ACCS[ordered_columns]
|
55 |
+
|
56 |
+
if "Score" in PES_ACCS.columns:
|
57 |
+
PES_ACCS = PES_ACCS.sort_values(by="Score", ascending=False)
|
58 |
+
|
59 |
+
return PES_ACCS
|
60 |
+
file_path = str(abs_path / "leaderboards/pes_accuracy.json")
|
61 |
+
|
62 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
63 |
+
sample_data = pd.read_json(file_path).iloc[0].to_dict() # Load the first row as a dict
|
64 |
+
|
65 |
+
ORDER_LIST, DATA_TYPES = generate_order_list_and_data_types(sample_data)
|
66 |
+
PES_ACCS = load_json_data(file_path, ORDER_LIST)
|
67 |
+
# PES_ACCS = PES_ACCS.style.highlight_max(
|
68 |
+
# color = '#ff7070',
|
69 |
+
# subset=PES_ACCS.columns[1:]).format(precision=2)
|
70 |
+
COLUMN_HEADERS = ORDER_LIST
|
71 |
+
|
72 |
+
print('test')
|
src/styles.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
.markdown-text {
|
3 |
+
font-size: 16px !important;
|
4 |
+
}
|
5 |
+
#models-to-add-text {
|
6 |
+
font-size: 18px !important;
|
7 |
+
}
|
8 |
+
#citation-button span {
|
9 |
+
font-size: 16px !important;
|
10 |
+
}
|
11 |
+
#citation-button textarea {
|
12 |
+
font-size: 16px !important;
|
13 |
+
}
|
14 |
+
#citation-button > label > button {
|
15 |
+
margin: 6px;
|
16 |
+
transform: scale(1.3);
|
17 |
+
}
|
18 |
+
#leaderboard-table {
|
19 |
+
margin-top: 15px
|
20 |
+
}
|
21 |
+
#leaderboard-table-lite {
|
22 |
+
margin-top: 15px
|
23 |
+
}
|
24 |
+
#search-bar-table-box > div:first-child {
|
25 |
+
background: none;
|
26 |
+
border: none;
|
27 |
+
}
|
28 |
+
|
29 |
+
#search-bar {
|
30 |
+
padding: 0px;
|
31 |
+
}
|
32 |
+
/* Hides the final AutoEvalColumn */
|
33 |
+
#llm-benchmark-tab-table table td:last-child,
|
34 |
+
#llm-benchmark-tab-table table th:last-child {
|
35 |
+
display: none;
|
36 |
+
}
|
37 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
38 |
+
table td:first-child,
|
39 |
+
table th:first-child {
|
40 |
+
max-width: 400px;
|
41 |
+
overflow: auto;
|
42 |
+
white-space: nowrap;
|
43 |
+
}
|
44 |
+
table > tbody > tr > td:nth-child(3) > div {
|
45 |
+
overflow-x: auto;
|
46 |
+
width: 450px;
|
47 |
+
}
|
48 |
+
tbody span {
|
49 |
+
-webkit-user-select: text;
|
50 |
+
-moz-user-select: text;
|
51 |
+
-ms-user-select: text;
|
52 |
+
user-select: text;
|
53 |
+
}
|
54 |
+
.tab-buttons button {
|
55 |
+
font-size: 20px;
|
56 |
+
}
|
57 |
+
#scale-logo {
|
58 |
+
border-style: none !important;
|
59 |
+
box-shadow: none;
|
60 |
+
display: block;
|
61 |
+
margin-left: auto;
|
62 |
+
margin-right: auto;
|
63 |
+
max-width: 600px;
|
64 |
+
}
|
65 |
+
#scale-logo .download {
|
66 |
+
display: none;
|
67 |
+
}
|
68 |
+
#filter_type{
|
69 |
+
border: 0;
|
70 |
+
padding-left: 0;
|
71 |
+
padding-top: 0;
|
72 |
+
}
|
73 |
+
#filter_type label {
|
74 |
+
display: flex;
|
75 |
+
}
|
76 |
+
#filter_type label > span{
|
77 |
+
margin-top: var(--spacing-lg);
|
78 |
+
margin-right: 0.5em;
|
79 |
+
}
|
80 |
+
#filter_type label > .wrap{
|
81 |
+
width: 103px;
|
82 |
+
}
|
83 |
+
#filter_type label > .wrap .wrap-inner{
|
84 |
+
padding: 2px;
|
85 |
+
}
|
86 |
+
#filter_type label > .wrap .wrap-inner input{
|
87 |
+
width: 1px
|
88 |
+
}
|
89 |
+
#filter-columns-type{
|
90 |
+
border:0;
|
91 |
+
padding:0.5;
|
92 |
+
}
|
93 |
+
#filter-columns-size{
|
94 |
+
border:0;
|
95 |
+
padding:0.5;
|
96 |
+
}
|
97 |
+
#box-filter > .form{
|
98 |
+
border: 0
|
99 |
+
}
|
100 |
+
"""
|
101 |
+
|
102 |
+
get_window_url_params = """
|
103 |
+
function(url_params) {
|
104 |
+
const params = new URLSearchParams(window.location.search);
|
105 |
+
url_params = Object.fromEntries(params);
|
106 |
+
return url_params;
|
107 |
+
}
|
108 |
+
"""
|
src/utils.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|