Spaces:
Sleeping
Sleeping
import pandas as pd | |
from pathlib import Path | |
from ..styles import highlight_color | |
abs_path = Path(__file__).parent.parent.parent | |
def replace_models_names(model_name): | |
if "gpt" in model_name: | |
return model_name | |
replaces = {'meta-llama': 'meta_llama', | |
'epfl-llm':'epfl_llm', | |
'01-ai':'01_ai'} | |
new_name = model_name.replace('model-', '') | |
for k, v in replaces.items(): | |
if new_name.startswith(k): | |
new_name = new_name.replace(k, v) | |
new_name = new_name.replace('-','/',1) | |
new_name = new_name.replace('_','-',1) | |
new_name = f"[{new_name}](https://huggingface.co/{new_name})" | |
return new_name | |
def load_json_data(file_path): | |
ALL_ACCS = pd.read_json(file_path) | |
for column in ALL_ACCS.columns: | |
if ALL_ACCS[column].apply(type).eq(dict).any(): | |
ALL_ACCS[column] = ALL_ACCS[column].apply(str) | |
for column in ALL_ACCS.select_dtypes(include='number').columns: | |
ALL_ACCS[column] = ALL_ACCS[column].round(2) | |
return ALL_ACCS | |
file_paths = [ | |
str(abs_path / "leaderboards/pes_accs.json"), | |
str(abs_path / "leaderboards/ldek_accs.json"), | |
str(abs_path / "leaderboards/lek_accs.json"), | |
] | |
model_data = {} | |
for file_path in file_paths: | |
ALL_ACCS = load_json_data(file_path) | |
for _, row in ALL_ACCS.iterrows(): | |
model_name = replace_models_names(row["model_name"]) | |
overall_accuracy = row["overall_accuracy"] | |
if model_name not in model_data: | |
model_data[model_name] = {"model_name": model_name} | |
file_key = file_path.split("/")[-1].replace(".json", "") # Use file name as key | |
model_data[model_name][f"overall_acc_from_{file_key}"] = overall_accuracy | |
ALL_ACCS = pd.DataFrame(list(model_data.values())) | |
ALL_ACCS=ALL_ACCS.rename(columns={'overall_acc_from_pes_accs':'PES', | |
'overall_acc_from_ldek_accs':'LDEK', | |
'overall_acc_from_lek_accs':'LEK'}) | |
ALL_ACCS['Average'] = ALL_ACCS[['PES', 'LDEK', 'LEK']].mean(axis=1).round(2) | |
columns = list(ALL_ACCS.columns) | |
columns.insert(1, columns.pop(columns.index('Average'))) | |
ALL_ACCS = ALL_ACCS[columns] | |
ALL_ACCS = ALL_ACCS.sort_values(by="Average", ascending=False) | |
STYLED = ALL_ACCS.style.highlight_max( | |
color = highlight_color, | |
subset=ALL_ACCS.columns[-4:]).format(precision=2) | |