Martijn van Beers commited on
Commit
9d1fa85
1 Parent(s): 6c01ee5

Clean up code

Browse files

* separates out the code for the two methods
* use gradio Blocks instead of Interface for flexibility
* add a markdown file for a note on explainability models and their
limitations, filled with a placeholder for now

Files changed (6) hide show
  1. app.py +33 -271
  2. description.md +2 -2
  3. lib/gradient_rollout.py +112 -0
  4. lib/integrated_gradients.py +90 -0
  5. lib/util.py +86 -0
  6. notice.md +1 -0
app.py CHANGED
@@ -1,291 +1,53 @@
1
  import sys
2
  import pandas
3
  import gradio
 
4
 
5
  sys.path.append("lib")
6
 
7
  import torch
8
 
 
 
 
9
  from transformers import AutoModelForSequenceClassification
10
- from BERT_explainability.ExplanationGenerator import Generator
11
- from BERT_explainability.roberta2 import RobertaForSequenceClassification
12
  from transformers import AutoTokenizer
13
  from captum.attr import LayerIntegratedGradients
14
  from captum.attr import visualization
 
15
  import torch
16
 
17
- # from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
18
- class PyTMinMaxScalerVectorized(object):
19
- """
20
- Transforms each channel to the range [0, 1].
21
- """
22
 
23
- def __init__(self, dimension=-1):
24
- self.d = dimension
25
-
26
- def __call__(self, tensor):
27
- d = self.d
28
- scale = 1.0 / (
29
- tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
30
- )
31
- tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
32
- return tensor
33
-
34
-
35
- if torch.cuda.is_available():
36
- device = torch.device("cuda")
37
- else:
38
- device = torch.device("cpu")
39
-
40
- model = RobertaForSequenceClassification.from_pretrained(
41
- "textattack/roberta-base-SST-2"
42
- ).to(device)
43
- model.eval()
44
- model2 = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2")
45
- tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
46
- # initialize the explanations generator
47
- explanations = Generator(model, "roberta")
48
-
49
- classifications = ["NEGATIVE", "POSITIVE"]
50
-
51
- # rule 5 from paper
52
- def avg_heads(cam, grad):
53
- cam = (grad * cam).clamp(min=0).mean(dim=-3)
54
- # set negative values to 0, then average
55
- # cam = cam.clamp(min=0).mean(dim=0)
56
- return cam
57
-
58
-
59
- # rule 6 from paper
60
- def apply_self_attention_rules(R_ss, cam_ss):
61
- R_ss_addition = torch.matmul(cam_ss, R_ss)
62
- return R_ss_addition
63
-
64
-
65
- def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
66
- output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
67
- if index == None:
68
- # index = np.expand_dims(np.arange(input_ids.shape[1])
69
- # by default explain the class with the highest score
70
- index = output.argmax(axis=-1).detach().cpu().numpy()
71
-
72
- # create a one-hot vector selecting class we want explanations for
73
- one_hot = (
74
- torch.nn.functional.one_hot(
75
- torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
76
- )
77
- .to(torch.float)
78
- .requires_grad_(True)
79
- ).to(device)
80
- one_hot = torch.sum(one_hot * output)
81
- model.zero_grad()
82
- # create the gradients for the class we're interested in
83
- one_hot.backward(retain_graph=True)
84
-
85
- num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
86
- R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
87
-
88
- for i, blk in enumerate(model.roberta.encoder.layer):
89
- if i < start_layer:
90
- continue
91
- grad = blk.attention.self.get_attn_gradients()
92
- cam = blk.attention.self.get_attn()
93
- cam = avg_heads(cam, grad)
94
- joint = apply_self_attention_rules(R, cam)
95
- R += joint
96
- return output, R[:, 0, 1:-1]
97
-
98
-
99
- def visualize_text(datarecords, legend=True):
100
- dom = ["<table width: 100%>"]
101
- rows = [
102
- "<tr><th>True Label</th>"
103
- "<th>Predicted Label</th>"
104
- "<th>Attribution Label</th>"
105
- "<th>Attribution Score</th>"
106
- "<th>Word Importance</th>"
107
- ]
108
- for datarecord in datarecords:
109
- rows.append(
110
- "".join(
111
- [
112
- "<tr>",
113
- visualization.format_classname(datarecord.true_class),
114
- visualization.format_classname(
115
- "{0} ({1:.2f})".format(
116
- datarecord.pred_class, datarecord.pred_prob
117
- )
118
- ),
119
- visualization.format_classname(datarecord.attr_class),
120
- visualization.format_classname(
121
- "{0:.2f}".format(datarecord.attr_score)
122
- ),
123
- visualization.format_word_importances(
124
- datarecord.raw_input_ids, datarecord.word_attributions
125
- ),
126
- "<tr>",
127
- ]
128
- )
129
- )
130
-
131
- if legend:
132
- dom.append(
133
- '<div style="border-top: 1px solid; margin-top: 5px; \
134
- padding-top: 5px; display: inline-block">'
135
- )
136
- dom.append("<b>Legend: </b>")
137
-
138
- for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
139
- dom.append(
140
- '<span style="display: inline-block; width: 10px; height: 10px; \
141
- border: 1px solid; background-color: \
142
- {value}"></span> {label} '.format(
143
- value=visualization._get_color(value), label=label
144
- )
145
- )
146
- dom.append("</div>")
147
-
148
- dom.append("".join(rows))
149
- dom.append("</table>")
150
- html = "".join(dom)
151
-
152
- return html
153
-
154
-
155
- def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8):
156
- # generate an explanation for the input
157
- output, expl = generate_relevance(
158
- model, input_ids, attention_mask, index=index, start_layer=start_layer
159
- )
160
- # normalize scores
161
- scaler = PyTMinMaxScalerVectorized()
162
-
163
- norm = scaler(expl)
164
- # get the model classification
165
- output = torch.nn.functional.softmax(output, dim=-1)
166
-
167
- vis_data_records = []
168
- for record in range(input_ids.size(0)):
169
- classification = output[record].argmax(dim=-1).item()
170
- class_name = classifications[classification]
171
- nrm = norm[record]
172
-
173
- # if the classification is negative, higher explanation scores are more negative
174
- # flip for visualization
175
- if class_name == "NEGATIVE":
176
- nrm *= -1
177
- tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
178
- 1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
179
- ]
180
- # vis_data_records.append(list(zip(tokens, nrm.tolist())))
181
- vis_data_records.append(
182
- visualization.VisualizationDataRecord(
183
- nrm,
184
- output[record][classification],
185
- classification,
186
- classification,
187
- index,
188
- 1,
189
- tokens,
190
- 1,
191
- )
192
- )
193
- return visualize_text(vis_data_records)
194
-
195
- def custom_forward(inputs, attention_mask=None, pos=0):
196
- result = model2(inputs, attention_mask=attention_mask, return_dict=True)
197
- preds = result.logits
198
- return preds
199
-
200
- def summarize_attributions(attributions):
201
- attributions = attributions.sum(dim=-1).squeeze(0)
202
- attributions = attributions / torch.norm(attributions)
203
- return attributions
204
-
205
-
206
- def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_token_id, layer=None, steps=20):
207
- try:
208
- output = model2(input_ids=input_ids, attention_mask=attention_mask)[0]
209
- index = output.argmax(axis=-1).detach().cpu().numpy()
210
-
211
- ablator = LayerIntegratedGradients(custom_forward, layer)
212
- input_tensor = input_ids
213
- attention_mask = attention_mask
214
- attributions = ablator.attribute(
215
- inputs=input_ids,
216
- baselines=ref_token_id,
217
- additional_forward_args=(attention_mask),
218
- target=1,
219
- n_steps=steps,
220
- )
221
- attributions = summarize_attributions(attributions).unsqueeze_(0)
222
- finally:
223
- pass
224
- vis_data_records = []
225
- for record in range(input_ids.size(0)):
226
- classification = output[record].argmax(dim=-1).item()
227
- class_name = classifications[classification]
228
- attr = attributions[record]
229
- tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
230
- 1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
231
- ]
232
- vis_data_records.append(
233
- visualization.VisualizationDataRecord(
234
- attr,
235
- output[record][classification],
236
- classification,
237
- classification,
238
- index,
239
- 1,
240
- tokens,
241
- 1,
242
- )
243
- )
244
- return visualize_text(vis_data_records)
245
-
246
- def sentence_sentiment(input_text, layer):
247
- text_batch = [input_text]
248
- encoding = tokenizer(text_batch, return_tensors="pt")
249
- input_ids = encoding["input_ids"].to(device)
250
- attention_mask = encoding["attention_mask"].to(device)
251
- layer = int(layer)
252
- if layer == 0:
253
- layer = model2.roberta.embeddings
254
- else:
255
- layer = getattr(model2.roberta.encoder.layer, str(layer-1))
256
-
257
- output = run_attribution_model(input_ids, attention_mask, layer=layer)
258
- return output
259
-
260
- def sentiment_explanation_hila(input_text, layer):
261
- text_batch = [input_text]
262
- encoding = tokenizer(text_batch, return_tensors="pt")
263
- input_ids = encoding["input_ids"].to(device)
264
- attention_mask = encoding["attention_mask"].to(device)
265
-
266
- # true class is positive - 1
267
- true_class = 1
268
-
269
- return show_explanation(model, input_ids, attention_mask, start_layer=int(layer))
270
-
271
- layer_slider = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select layer")
272
- hila = gradio.Interface(
273
- fn=sentiment_explanation_hila,
274
- inputs=["text", layer_slider],
275
- outputs="html",
276
- )
277
- # layer_slider2 = gradio.Slider(minimum=0, maximum=12, value=0, step=1, label="Select IG layer")
278
- lig = gradio.Interface(
279
- fn=sentence_sentiment,
280
- inputs=["text", layer_slider],
281
- outputs="html",
282
- )
283
-
284
- with open("description.md", "r") as fh:
285
- description = fh.read()
286
 
287
  examples = pandas.read_csv("examples.csv").to_numpy().tolist()
288
 
289
- iface = gradio.Parallel(hila, lig, title="RoBERTa Explainability", description=description, examples=examples)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290
 
291
  iface.launch()
 
1
  import sys
2
  import pandas
3
  import gradio
4
+ import pathlib
5
 
6
  sys.path.append("lib")
7
 
8
  import torch
9
 
10
+ from roberta2 import RobertaForSequenceClassification
11
+ from gradient_rollout import GradientRolloutExplainer
12
+ from integrated_gradients import IntegratedGradientsExplainer
13
  from transformers import AutoModelForSequenceClassification
 
 
14
  from transformers import AutoTokenizer
15
  from captum.attr import LayerIntegratedGradients
16
  from captum.attr import visualization
17
+ import util
18
  import torch
19
 
20
+ ig_explainer = IntegratedGradientsExplainer()
21
+ gr_explainer = GradientRolloutExplainer()
 
 
 
22
 
23
+ def run(sent, rollout, ig):
24
+ a = gr_explainer(sent, rollout)
25
+ b = ig_explainer(sent, ig)
26
+ return a, b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  examples = pandas.read_csv("examples.csv").to_numpy().tolist()
29
 
30
+ with gradio.Blocks(title="Explanations with attention rollout") as iface:
31
+ util.Markdown(pathlib.Path("description.md"))
32
+ with gradio.Row(equal_height=True):
33
+ with gradio.Column(scale=4):
34
+ sent = gradio.Textbox(label="Input sentence")
35
+ with gradio.Column(scale=1):
36
+ but = gradio.Button("Submit")
37
+ with gradio.Row(equal_height=True):
38
+ with gradio.Column():
39
+ rollout_layer = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select rollout start layer")
40
+ rollout_result = gradio.HTML()
41
+ with gradio.Column():
42
+ ig_layer = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select IG layer")
43
+ ig_result = gradio.HTML()
44
+ gradio.Examples(examples, [sent])
45
+ with gradio.Accordion("A note about explainability models"):
46
+ util.Markdown(pathlib.Path("notice.md"))
47
+
48
+ rollout_layer.change(gr_explainer, [sent, rollout_layer], rollout_result)
49
+ ig_layer.change(ig_explainer, [sent, ig_layer], ig_result)
50
+ but.click(run, [sent, rollout_layer, ig_layer], [rollout_result, ig_result])
51
+
52
 
53
  iface.launch()
description.md CHANGED
@@ -1,4 +1,4 @@
1
- # RoBERTa Explainability
2
 
3
  In this demo, we use the RoBERTa language model (optimized for masked language modelling and finetuned for sentiment analysis).
4
  The model predicts for a given sentences whether it expresses a positive, negative or neutral sentiment.
@@ -7,7 +7,7 @@ A range of so-called "attribution methods" have been developed that attempt to d
7
  they provide a very limited form of "explanation" -- and often disagree -- but sometimes provide good initial hypotheses nevertheless that can be further explored with other methods.
8
 
9
  Abnar & Zuidema (2020) proposed a method for Transformers called "Attention Rollout", which was further refined by Chefer et al. (2021) into Gradient-weighted Rollout.
10
- Here we compare it to another popular method called Integrated Gradient.
11
 
12
  * Gradient-weighted attention rollout, as defined by [Hila Chefer](https://github.com/hila-chefer)
13
  [(Transformer-MM_explainability)](https://github.com/hila-chefer/Transformer-MM-Explainability/), with rollout recursion upto selected layer
 
1
+ # Attention Rollout -- RoBERTa
2
 
3
  In this demo, we use the RoBERTa language model (optimized for masked language modelling and finetuned for sentiment analysis).
4
  The model predicts for a given sentences whether it expresses a positive, negative or neutral sentiment.
 
7
  they provide a very limited form of "explanation" -- and often disagree -- but sometimes provide good initial hypotheses nevertheless that can be further explored with other methods.
8
 
9
  Abnar & Zuidema (2020) proposed a method for Transformers called "Attention Rollout", which was further refined by Chefer et al. (2021) into Gradient-weighted Rollout.
10
+ Here we compare it to another popular method called Integrated Gradients.
11
 
12
  * Gradient-weighted attention rollout, as defined by [Hila Chefer](https://github.com/hila-chefer)
13
  [(Transformer-MM_explainability)](https://github.com/hila-chefer/Transformer-MM-Explainability/), with rollout recursion upto selected layer
lib/gradient_rollout.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer
3
+ from captum.attr import visualization
4
+
5
+ from roberta2 import RobertaForSequenceClassification
6
+ from util import visualize_text, PyTMinMaxScalerVectorized
7
+
8
+ classifications = ["NEGATIVE", "POSITIVE"]
9
+
10
+ class GradientRolloutExplainer:
11
+ def __init__(self):
12
+ self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
13
+ self.model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(self.device)
14
+ self.model.eval()
15
+ self.tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
16
+
17
+ def tokens_from_ids(self, ids):
18
+ return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
19
+
20
+ def run_attribution_model(self, input_ids, attention_mask, index=None, start_layer=0):
21
+ def avg_heads(cam, grad):
22
+ cam = (grad * cam).clamp(min=0).mean(dim=-3)
23
+ # set negative values to 0, then average
24
+ # cam = cam.clamp(min=0).mean(dim=0)
25
+ return cam
26
+
27
+ def apply_self_attention_rules(R_ss, cam_ss):
28
+ R_ss_addition = torch.matmul(cam_ss, R_ss)
29
+ return R_ss_addition
30
+
31
+ output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
32
+ if index == None:
33
+ # index = np.expand_dims(np.arange(input_ids.shape[1])
34
+ # by default explain the class with the highest score
35
+ index = output.argmax(axis=-1).detach().cpu().numpy()
36
+
37
+ # create a one-hot vector selecting class we want explanations for
38
+ one_hot = (
39
+ torch.nn.functional.one_hot(
40
+ torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
41
+ )
42
+ .to(torch.float)
43
+ .requires_grad_(True)
44
+ ).to(self.device)
45
+ one_hot = torch.sum(one_hot * output)
46
+ self.model.zero_grad()
47
+ # create the gradients for the class we're interested in
48
+ one_hot.backward(retain_graph=True)
49
+
50
+ num_tokens = self.model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
51
+ R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(self.device)
52
+
53
+ for i, blk in enumerate(self.model.roberta.encoder.layer):
54
+ if i < start_layer:
55
+ continue
56
+ grad = blk.attention.self.get_attn_gradients()
57
+ cam = blk.attention.self.get_attn()
58
+ cam = avg_heads(cam, grad)
59
+ joint = apply_self_attention_rules(R, cam)
60
+ R += joint
61
+ return output, R[:, 0, 1:-1]
62
+
63
+ def build_visualization(self, input_ids, attention_mask, index=None, start_layer=8):
64
+ # generate an explanation for the input
65
+ vis_data_records = []
66
+
67
+ for index in range(2):
68
+ output, expl = self.run_attribution_model(
69
+ input_ids, attention_mask, index=index, start_layer=start_layer
70
+ )
71
+ # normalize scores
72
+ scaler = PyTMinMaxScalerVectorized()
73
+
74
+ norm = scaler(expl)
75
+ # get the model classification
76
+ output = torch.nn.functional.softmax(output, dim=-1)
77
+
78
+ for record in range(input_ids.size(0)):
79
+ classification = output[record].argmax(dim=-1).item()
80
+ class_name = classifications[classification]
81
+ nrm = norm[record]
82
+
83
+ # if the classification is negative, higher explanation scores are more negative
84
+ # flip for visualization
85
+ #if class_name == "NEGATIVE":
86
+ if index == 0:
87
+ nrm *= -1
88
+ tokens = self.tokens_from_ids(input_ids[record].flatten())[
89
+ 1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
90
+ ]
91
+ vis_data_records.append(
92
+ visualization.VisualizationDataRecord(
93
+ nrm,
94
+ output[record][classification],
95
+ classification,
96
+ classification,
97
+ index,
98
+ 1,
99
+ tokens,
100
+ 1,
101
+ )
102
+ )
103
+ return visualize_text(vis_data_records)
104
+
105
+ def __call__(self, input_text, start_layer=8):
106
+ text_batch = [input_text]
107
+ encoding = self.tokenizer(text_batch, return_tensors="pt")
108
+ input_ids = encoding["input_ids"].to(self.device)
109
+ attention_mask = encoding["attention_mask"].to(self.device)
110
+
111
+ return self.build_visualization(input_ids, attention_mask, start_layer=int(start_layer))
112
+
lib/integrated_gradients.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from transformers import AutoModelForSequenceClassification
4
+ from transformers import AutoTokenizer
5
+
6
+ from captum.attr import LayerIntegratedGradients
7
+ from captum.attr import visualization
8
+
9
+ from util import visualize_text
10
+
11
+ classifications = ["NEGATIVE", "POSITIVE"]
12
+
13
+ class IntegratedGradientsExplainer:
14
+ def __init__(self):
15
+ self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
16
+ self.model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(self.device)
17
+ self.tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
18
+ self.ref_token_id = self.tokenizer.unk_token_id
19
+
20
+ def tokens_from_ids(self, ids):
21
+ return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
22
+
23
+ def custom_forward(self, inputs, attention_mask=None, pos=0):
24
+ result = self.model(inputs, attention_mask=attention_mask, return_dict=True)
25
+ preds = result.logits
26
+ return preds
27
+
28
+ @staticmethod
29
+ def summarize_attributions(attributions):
30
+ attributions = attributions.sum(dim=-1).squeeze(0)
31
+ attributions = attributions / torch.norm(attributions)
32
+ return attributions
33
+
34
+
35
+ def run_attribution_model(self, input_ids, attention_mask, index=None, layer=None, steps=20):
36
+ try:
37
+ output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
38
+ if index is None:
39
+ index = output.argmax(axis=-1).item()
40
+
41
+ ablator = LayerIntegratedGradients(self.custom_forward, layer)
42
+ input_tensor = input_ids
43
+ attention_mask = attention_mask
44
+ attributions = ablator.attribute(
45
+ inputs=input_ids,
46
+ baselines=self.ref_token_id,
47
+ additional_forward_args=(attention_mask),
48
+ target=index,
49
+ n_steps=steps,
50
+ )
51
+ return self.summarize_attributions(attributions).unsqueeze_(0), output, index
52
+ finally:
53
+ pass
54
+
55
+ def build_visualization(self, input_ids, attention_mask, **kwargs):
56
+ vis_data_records = []
57
+ attributions, output, index = self.run_attribution_model(input_ids, attention_mask, **kwargs)
58
+ for record in range(input_ids.size(0)):
59
+ classification = output[record].argmax(dim=-1).item()
60
+ class_name = classifications[classification]
61
+ attr = attributions[record]
62
+ tokens = self.tokens_from_ids(input_ids[record].flatten())[
63
+ 1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
64
+ ]
65
+ vis_data_records.append(
66
+ visualization.VisualizationDataRecord(
67
+ attr,
68
+ output[record][classification],
69
+ classification,
70
+ classification,
71
+ index,
72
+ 1,
73
+ tokens,
74
+ 1,
75
+ )
76
+ )
77
+ return visualize_text(vis_data_records)
78
+
79
+ def __call__(self, input_text, layer):
80
+ text_batch = [input_text]
81
+ encoding = self.tokenizer(text_batch, return_tensors="pt")
82
+ input_ids = encoding["input_ids"].to(self.device)
83
+ attention_mask = encoding["attention_mask"].to(self.device)
84
+ layer = int(layer)
85
+ if layer == 0:
86
+ layer = self.model.roberta.embeddings
87
+ else:
88
+ layer = getattr(self.model.roberta.encoder.layer, str(layer-1))
89
+
90
+ return self.build_visualization(input_ids, attention_mask, layer=layer)
lib/util.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pathlib
2
+ import gradio
3
+ from captum.attr import visualization
4
+
5
+ class Markdown(gradio.Markdown):
6
+ def __init__(self, value, *args, **kwargs):
7
+ if isinstance(value, pathlib.Path):
8
+ value = value.read_text()
9
+ elif isinstance(value, io.TextIOWrapper):
10
+ value = value.read()
11
+ super().__init__(value, *args, **kwargs)
12
+
13
+ # from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
14
+ class PyTMinMaxScalerVectorized(object):
15
+ """
16
+ Transforms each channel to the range [0, 1].
17
+ """
18
+
19
+ def __init__(self, dimension=-1):
20
+ self.d = dimension
21
+
22
+ def __call__(self, tensor):
23
+ d = self.d
24
+ scale = 1.0 / (
25
+ tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
26
+ )
27
+ tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
28
+ return tensor
29
+
30
+ # copied out of captum because we need raw html instead of a jupyter widget
31
+ def visualize_text(datarecords, legend=True):
32
+ dom = ["<table width: 100%>"]
33
+ rows = [
34
+ "<tr><th>True Label</th>"
35
+ "<th>Predicted Label</th>"
36
+ "<th>Attribution Label</th>"
37
+ "<th>Attribution Score</th>"
38
+ "<th>Word Importance</th>"
39
+ ]
40
+ for datarecord in datarecords:
41
+ rows.append(
42
+ "".join(
43
+ [
44
+ "<tr>",
45
+ visualization.format_classname(datarecord.true_class),
46
+ visualization.format_classname(
47
+ "{0} ({1:.2f})".format(
48
+ datarecord.pred_class, datarecord.pred_prob
49
+ )
50
+ ),
51
+ visualization.format_classname(datarecord.attr_class),
52
+ visualization.format_classname(
53
+ "{0:.2f}".format(datarecord.attr_score)
54
+ ),
55
+ visualization.format_word_importances(
56
+ datarecord.raw_input_ids, datarecord.word_attributions
57
+ ),
58
+ "<tr>",
59
+ ]
60
+ )
61
+ )
62
+
63
+ if legend:
64
+ dom.append(
65
+ '<div style="border-top: 1px solid; margin-top: 5px; \
66
+ padding-top: 5px; display: inline-block">'
67
+ )
68
+ dom.append("<b>Legend: </b>")
69
+
70
+ for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
71
+ dom.append(
72
+ '<span style="display: inline-block; width: 10px; height: 10px; \
73
+ border: 1px solid; background-color: \
74
+ {value}"></span> {label} '.format(
75
+ value=visualization._get_color(value), label=label
76
+ )
77
+ )
78
+ dom.append("</div>")
79
+
80
+ dom.append("".join(rows))
81
+ dom.append("</table>")
82
+ html = "".join(dom)
83
+
84
+ return html
85
+
86
+
notice.md ADDED
@@ -0,0 +1 @@
 
 
1
+ [placeholder]