Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import argparse | |
| import numpy as np | |
| import torch | |
| import glob | |
| from captum._utils.common import _get_module_from_name | |
| # compute rollout between attention layers | |
| def compute_rollout_attention(all_layer_matrices, start_layer=0): | |
| # adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow | |
| num_tokens = all_layer_matrices[0].shape[1] | |
| batch_size = all_layer_matrices[0].shape[0] | |
| eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device) | |
| all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))] | |
| matrices_aug = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) | |
| for i in range(len(all_layer_matrices))] | |
| joint_attention = matrices_aug[start_layer] | |
| for i in range(start_layer+1, len(matrices_aug)): | |
| joint_attention = matrices_aug[i].bmm(joint_attention) | |
| return joint_attention | |
| class Generator: | |
| def __init__(self, model, key="bert.encoder.layer"): | |
| self.model = model | |
| self.key = key | |
| self.model.eval() | |
| def tokens_from_ids(self, ids): | |
| return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids))) | |
| def _calculate_gradients(self, output, index, do_relprop=True): | |
| if index == None: | |
| index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
| one_hot_vector = (torch.nn.functional | |
| .one_hot( | |
| # one_hot requires ints | |
| torch.tensor(index, dtype=torch.int64), | |
| num_classes=output.size(-1) | |
| ) | |
| # but requires_grad_ needs floats | |
| .to(torch.float) | |
| ).to(output.device) | |
| hot_output = torch.sum(one_hot_vector.clone().requires_grad_(True) * output) | |
| self.model.zero_grad() | |
| hot_output.backward(retain_graph=True) | |
| if do_relprop: | |
| return self.model.relprop(one_hot_vector, alpha=1) | |
| def generate_LRP(self, input_ids, attention_mask, | |
| index=None, start_layer=11): | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| if index == None: | |
| index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
| self._calculate_gradients(output, index) | |
| cams = [] | |
| blocks = _get_module_from_name(self.model, self.key) | |
| for blk in blocks: | |
| grad = blk.attention.self.get_attn_gradients() | |
| cam = blk.attention.self.get_attn_cam() | |
| cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
| grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
| cam = grad * cam | |
| cam = cam.clamp(min=0).mean(dim=0) | |
| cams.append(cam.unsqueeze(0)) | |
| rollout = compute_rollout_attention(cams, start_layer=start_layer) | |
| rollout[:, 0, 0] = rollout[:, 0].min() | |
| return rollout[:, 0] | |
| def generate_LRP_last_layer(self, input_ids, attention_mask, | |
| index=None): | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| if index == None: | |
| index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
| self._calculate_gradients(output, index) | |
| cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_cam()[0] | |
| cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0) | |
| cam[:, 0, 0] = 0 | |
| return cam[:, 0] | |
| def generate_full_lrp(self, input_ids, attention_mask, | |
| index=None): | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| if index == None: | |
| index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
| cam = self._calculate_gradients(output, index) | |
| cam = cam.sum(dim=2) | |
| cam[:, 0] = 0 | |
| return cam | |
| def generate_attn_last_layer(self, input_ids, attention_mask, | |
| index=None): | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn()[0] | |
| cam = cam.mean(dim=0).unsqueeze(0) | |
| cam[:, 0, 0] = 0 | |
| return cam[:, 0] | |
| def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None): | |
| self.model.zero_grad() | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| blocks = _get_module_from_name(self.model, self.key) | |
| all_layer_attentions = [] | |
| for blk in blocks: | |
| attn_heads = blk.attention.self.get_attn() | |
| avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() | |
| all_layer_attentions.append(avg_heads) | |
| rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer) | |
| rollout[:, 0, 0] = 0 | |
| return output, rollout[:, 0] | |
| def generate_attn_gradcam(self, input_ids, attention_mask, index=None): | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| if index == None: | |
| index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
| self._calculate_gradients(output, index) | |
| cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn() | |
| grad = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_gradients() | |
| cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
| grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
| grad = grad.mean(dim=[1, 2], keepdim=True) | |
| cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0) | |
| cam = (cam - cam.min()) / (cam.max() - cam.min()) | |
| cam[:, 0, 0] = 0 | |
| return cam[:, 0] | |
| def generate_rollout_attn_gradcam(self, input_ids, attention_mask, index=None, start_layer=0): | |
| # rule 5 from paper | |
| def avg_heads(cam, grad): | |
| return (grad * cam).clamp(min=0).mean(dim=-3) | |
| # rule 6 from paper | |
| def apply_self_attention_rules(R_ss, cam_ss): | |
| return torch.matmul(cam_ss, R_ss) | |
| output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] | |
| self._calculate_gradients(output, index, do_relprop=False) | |
| num_tokens = input_ids.size(-1) | |
| R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device) | |
| blocks = _get_module_from_name(self.model, self.key) | |
| for i, blk in enumerate(blocks): | |
| if i < start_layer: | |
| continue | |
| grad = blk.attention.self.get_attn_gradients().detach() | |
| cam = blk.attention.self.get_attn().detach() | |
| cam = avg_heads(cam, grad) | |
| joint = apply_self_attention_rules(R, cam) | |
| R += joint | |
| # 0 because we look at the influence *on* the CLS token | |
| # 1:-1 because we don't want the influence *from* the CLS/SEP tokens | |
| return output, R[:, 0, 1:-1] | |
