|
from transformers import BertPreTrainedModel
|
|
from transformers.modeling_outputs import SequenceClassifierOutput
|
|
from transformers.utils import logging
|
|
from BERT_explainability.modules.layers_ours import *
|
|
from BERT_explainability.modules.BERT.BERT import BertModel
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
import torch.nn as nn
|
|
from typing import List, Any
|
|
import torch
|
|
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
|
|
|
|
|
class BertForSequenceClassification(BertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.bert = BertModel(config)
|
|
self.dropout = Dropout(config.hidden_dropout_prob)
|
|
self.classifier = Linear(config.hidden_size, config.num_labels)
|
|
|
|
self.init_weights()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
labels=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for computing the sequence classification/regression loss.
|
|
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
|
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.bert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
pooled_output = outputs[1]
|
|
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.num_labels == 1:
|
|
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def relprop(self, cam=None, **kwargs):
|
|
cam = self.classifier.relprop(cam, **kwargs)
|
|
cam = self.dropout.relprop(cam, **kwargs)
|
|
cam = self.bert.relprop(cam, **kwargs)
|
|
|
|
return cam
|
|
|
|
|
|
|
|
class BertClassifier(nn.Module):
|
|
"""Thin wrapper around BertForSequenceClassification"""
|
|
|
|
def __init__(self,
|
|
bert_dir: str,
|
|
pad_token_id: int,
|
|
cls_token_id: int,
|
|
sep_token_id: int,
|
|
num_labels: int,
|
|
max_length: int = 512,
|
|
use_half_precision=True):
|
|
super(BertClassifier, self).__init__()
|
|
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
|
if use_half_precision:
|
|
import apex
|
|
bert = bert.half()
|
|
self.bert = bert
|
|
self.pad_token_id = pad_token_id
|
|
self.cls_token_id = cls_token_id
|
|
self.sep_token_id = sep_token_id
|
|
self.max_length = max_length
|
|
|
|
def forward(self,
|
|
query: List[torch.tensor],
|
|
docids: List[Any],
|
|
document_batch: List[torch.tensor]):
|
|
assert len(query) == len(document_batch)
|
|
print(query)
|
|
|
|
|
|
|
|
target_device = next(self.parameters()).device
|
|
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
|
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
|
input_tensors = []
|
|
position_ids = []
|
|
for q, d in zip(query, document_batch):
|
|
if len(q) + len(d) + 2 > self.max_length:
|
|
d = d[:(self.max_length - len(q) - 2)]
|
|
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
|
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
|
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
|
device=target_device)
|
|
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
|
(classes,) = self.bert(bert_input.data,
|
|
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
|
position_ids=positions.data)
|
|
assert torch.all(classes == classes)
|
|
|
|
print(input_tensors[0])
|
|
print(self.relprop()[0])
|
|
|
|
return classes
|
|
|
|
def relprop(self, cam=None, **kwargs):
|
|
return self.bert.relprop(cam, **kwargs)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from transformers import BertTokenizer
|
|
import os
|
|
|
|
class Config:
|
|
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
|
hidden_dropout_prob):
|
|
self.hidden_size = hidden_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.num_labels = num_labels
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
|
add_special_tokens=True,
|
|
max_length=512,
|
|
return_token_type_ids=False,
|
|
return_attention_mask=True,
|
|
pad_to_max_length=True,
|
|
return_tensors='pt',
|
|
truncation=True)
|
|
|
|
print(x['input_ids'])
|
|
|
|
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
|
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
|
model.load_state_dict(torch.load(model_save_file))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
y = model(x['input_ids'], x['attention_mask'])
|
|
print(y)
|
|
|
|
cam, _ = model.relprop()
|
|
|
|
|
|
|
|
cam = cam.sum(-1)
|
|
|
|
|