Martijn van Beers
Move text and examples into separate files
adf3a47
raw
history blame
7.61 kB
import re
import sys
import pathlib
import csv
import gradio as gr
sys.path.append("CLIP_explainability/Transformer-MM-Explainability/")
import torch
import CLIP.clip as clip
import spacy
from PIL import Image, ImageFont, ImageDraw, ImageOps
from clip_grounding.utils.image import pad_to_square
from clip_grounding.datasets.png import (
overlay_relevance_map_on_image,
)
from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text
clip.clip._MODELS = {
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
}
def iter_file(filename):
with pathlib.Path(filename).open("r") as fh:
header = next(fh)
for line in fh:
yield line
colour_map = {
"N": "#f77189",
"CARDINAL": "#f7764a",
"DATE": "#d98a32",
"EVENT": "#bf9632",
"FAC": "#a99e31",
"GPE": "#90a531",
"LANGUAGE": "#68ad31",
"LAW": "#32b25e",
"LOC": "#34af86",
"MONEY": "#35ae9c",
"NORP": "#36acac",
"ORDINAL": "#37aabd",
"ORG": "#39a7d4",
"PERCENT": "#539ff4",
"PERSON": "#9890f4",
"PRODUCT": "#c47ef4",
"QUANTITY": "#ef5ff4",
"TIME": "#f565d0",
"WORK_OF_ART": "#f66baf",
}
device = "cuda" if torch.cuda.is_available() else "cpu"
# nlp = spacy.load("en_core_web_sm")
import en_core_web_sm
nlp = en_core_web_sm.load()
# Gradio Section:
def update_slider(model):
if model == "ViT-L/14":
return gr.update(maximum=23, value=23)
else:
return gr.update(maximum=11, value=11)
def run_demo(*args):
if len(args) == 4:
image, text, model_name, vision_layer = args
elif len(args) == 2:
image, text = args
model_name = "ViT-B/32"
vision_layer = 11
else:
raise ValueError("Unexpected number of parameters")
vision_layer = int(vision_layer)
model, preprocess = clip.load(model_name, device=device, jit=False)
orig_image = pad_to_square(image)
img = preprocess(orig_image).unsqueeze(0).to(device)
text_input = clip.tokenize([text]).to(device)
R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device, start_layer=vision_layer)
image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device)
overlapped = overlay_relevance_map_on_image(image, image_relevance)
text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0])
highlighted_text = []
for i, token in enumerate(text_tokens_decoded):
highlighted_text.append((str(token), float(text_scores[i])))
return overlapped, highlighted_text
# Default demo:
examples = list(csv.reader(iter_file("examples.csv")))
with gr.Blocks(title="CLIP Grounding Explainability") as iface_default:
gr.Markdown(pathlib.Path("description.md").read_text)
with gr.Row():
with gr.Column() as inputs:
orig = gr.components.Image(type='pil', label="Original Image")
description = gr.components.Textbox(label="Image description")
default_model = gr.Dropdown(label="CLIP Model", choices=['ViT-B/16', 'ViT-B/32', 'ViT-L/14'], value="ViT-B/32")
default_layer = gr.Slider(label="Vision start layer", minimum=0, maximum=11, step=1, value=11)
submit = gr.Button("Submit")
with gr.Column() as outputs:
image = gr.components.Image(type='pil', label="Output Image")
text = gr.components.HighlightedText(label="Text importance")
gr.Examples(examples=examples, inputs=[orig, description])
default_model.change(update_slider, inputs=default_model, outputs=default_layer)
submit.click(run_demo, inputs=[orig, description, default_model, default_layer], outputs=[image, text])
# NER demo:
def add_label_to_img(img, label, add_entity_label=True):
img = ImageOps.expand(img, border=45, fill=(255,255,255))
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("arial.ttf", 24)
m = re.match(r".*\((\w+)\)", label)
if add_entity_label and m is not None:
cat = m.group(1)
colours = tuple(map(lambda l: int(''.join(l),16), zip(*[iter(colour_map[cat][1:])]*2)))
draw.text((5,5), label , align="center", fill=colours, font=font)
else:
draw.text((5,5), label, align="center", fill=(0, 0, 0), font=font)
return img
def NER_demo(image, text, model_name):
# As the default image, we run the default demo on the input image and text:
overlapped, highlighted_text = run_demo(image, text, model_name)
gallery_images = [add_label_to_img(overlapped, "Complete sentence", add_entity_label=False)]
labeled_text = dict(
text=text,
entities=[],
)
# Then, we run the demo for each of the noun chunks in the text:
for chunk in nlp(text).noun_chunks:
if len(chunk) == 1 and chunk[0].pos_ == "PRON":
continue
chunk_text = chunk.text
chunk_label = None
for t in chunk:
if t.ent_type_ != '':
chunk_label = t.ent_type_
break
if chunk_label is None:
chunk_label = "N"
labeled_text['entities'].append({'entity': chunk_label, 'start': chunk.start_char, 'end': chunk.end_char})
overlapped, highlighted_text = run_demo(image, chunk_text, model_name)
overlapped_labelled = add_label_to_img(overlapped, f"{chunk_text} ({chunk_label})")
gallery_images.append(overlapped_labelled)
return labeled_text, gallery_images
entity_examples = list(csv.reader(iter_file("entity_examples.csv")))
with gr.Blocks(title="Entity Grounding explainability using CLIP") as iface_NER:
gr.Markdown(pathlib.Path("entity_description.md").read_text)
with gr.Row():
with gr.Column() as inputs:
img = gr.Image(type='pil', label="Original Image")
intext = gr.components.Textbox(label="Descriptive text")
ner_model = gr.Dropdown(label="CLIP Model", choices=['ViT-B/16', 'ViT-B/32', 'ViT-L/14'], value="ViT-B/32")
ner_layer = gr.Slider(label="Vision start layer", minimum=0, maximum=11, step=1, value=11)
submit = gr.Button("Submit")
with gr.Column() as outputs:
text = gr.components.HighlightedText(show_legend=True, color_map=colour_map, label="Noun chunks")
gallery = gr.components.Gallery(type='pil', label="NER Entity explanations")
gr.Examples(examples=entity_examples, inputs=[img, text])
ner_model.change(update_slider, inputs=ner_model, outputs=ner_layer)
submit.click(run_demo, inputs=[img, intext, ner_model, ner_layer], outputs=[text, gallery])
demo_tabs = gr.TabbedInterface([iface_default, iface_NER], ["Default", "Entities"])
with demo_tabs:
gr.Markdown(pathlib.Path("footer.md").read_text)
demo_tabs.launch(show_error=True)