Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import collections | |
import glob | |
import os | |
import random | |
import time | |
import argparse | |
from collections import OrderedDict | |
import json5 | |
import numpy as np | |
import glob | |
from torch.nn import functional as F | |
try: | |
from ruamel.yaml import YAML as yaml | |
except: | |
from ruamel_yaml import YAML as yaml | |
import torch | |
from utils.hparam import HParams | |
import logging | |
from logging import handlers | |
def str2bool(v): | |
"""Used in argparse.ArgumentParser.add_argument to indicate | |
that a type is a bool type and user can enter | |
- yes, true, t, y, 1, to represent True | |
- no, false, f, n, 0, to represent False | |
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("Boolean value expected.") | |
def find_checkpoint_of_mapper(mapper_ckpt_dir): | |
mapper_ckpts = glob.glob(os.path.join(mapper_ckpt_dir, "ckpts/*.pt")) | |
# Select the max steps | |
mapper_ckpts.sort() | |
mapper_weights_file = mapper_ckpts[-1] | |
return mapper_weights_file | |
def pad_f0_to_tensors(f0s, batched=None): | |
# Initialize | |
tensors = [] | |
if batched == None: | |
# Get the max frame for padding | |
size = -1 | |
for f0 in f0s: | |
size = max(size, f0.shape[-1]) | |
tensor = torch.zeros(len(f0s), size) | |
for i, f0 in enumerate(f0s): | |
tensor[i, : f0.shape[-1]] = f0[:] | |
tensors.append(tensor) | |
else: | |
start = 0 | |
while start + batched - 1 < len(f0s): | |
end = start + batched - 1 | |
# Get the max frame for padding | |
size = -1 | |
for i in range(start, end + 1): | |
size = max(size, f0s[i].shape[-1]) | |
tensor = torch.zeros(batched, size) | |
for i in range(start, end + 1): | |
tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:] | |
tensors.append(tensor) | |
start = start + batched | |
if start != len(f0s): | |
end = len(f0s) | |
# Get the max frame for padding | |
size = -1 | |
for i in range(start, end): | |
size = max(size, f0s[i].shape[-1]) | |
tensor = torch.zeros(len(f0s) - start, size) | |
for i in range(start, end): | |
tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:] | |
tensors.append(tensor) | |
return tensors | |
def pad_mels_to_tensors(mels, batched=None): | |
""" | |
Args: | |
mels: A list of mel-specs | |
Returns: | |
tensors: A list of tensors containing the batched mel-specs | |
mel_frames: A list of tensors containing the frames of the original mel-specs | |
""" | |
# Initialize | |
tensors = [] | |
mel_frames = [] | |
# Split mel-specs into batches to avoid cuda memory exceed | |
if batched == None: | |
# Get the max frame for padding | |
size = -1 | |
for mel in mels: | |
size = max(size, mel.shape[-1]) | |
tensor = torch.zeros(len(mels), mels[0].shape[0], size) | |
mel_frame = torch.zeros(len(mels), dtype=torch.int32) | |
for i, mel in enumerate(mels): | |
tensor[i, :, : mel.shape[-1]] = mel[:] | |
mel_frame[i] = mel.shape[-1] | |
tensors.append(tensor) | |
mel_frames.append(mel_frame) | |
else: | |
start = 0 | |
while start + batched - 1 < len(mels): | |
end = start + batched - 1 | |
# Get the max frame for padding | |
size = -1 | |
for i in range(start, end + 1): | |
size = max(size, mels[i].shape[-1]) | |
tensor = torch.zeros(batched, mels[0].shape[0], size) | |
mel_frame = torch.zeros(batched, dtype=torch.int32) | |
for i in range(start, end + 1): | |
tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:] | |
mel_frame[i - start] = mels[i].shape[-1] | |
tensors.append(tensor) | |
mel_frames.append(mel_frame) | |
start = start + batched | |
if start != len(mels): | |
end = len(mels) | |
# Get the max frame for padding | |
size = -1 | |
for i in range(start, end): | |
size = max(size, mels[i].shape[-1]) | |
tensor = torch.zeros(len(mels) - start, mels[0].shape[0], size) | |
mel_frame = torch.zeros(len(mels) - start, dtype=torch.int32) | |
for i in range(start, end): | |
tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:] | |
mel_frame[i - start] = mels[i].shape[-1] | |
tensors.append(tensor) | |
mel_frames.append(mel_frame) | |
return tensors, mel_frames | |
def load_model_config(args): | |
"""Load model configurations (in args.json under checkpoint directory) | |
Args: | |
args (ArgumentParser): arguments to run bins/preprocess.py | |
Returns: | |
dict: dictionary that stores model configurations | |
""" | |
if args.checkpoint_dir is None: | |
assert args.checkpoint_file is not None | |
checkpoint_dir = os.path.split(args.checkpoint_file)[0] | |
else: | |
checkpoint_dir = args.checkpoint_dir | |
config_path = os.path.join(checkpoint_dir, "args.json") | |
print("config_path: ", config_path) | |
config = load_config(config_path) | |
return config | |
def remove_and_create(dir): | |
if os.path.exists(dir): | |
os.system("rm -r {}".format(dir)) | |
os.makedirs(dir, exist_ok=True) | |
def has_existed(path, warning=False): | |
if not warning: | |
return os.path.exists(path) | |
if os.path.exists(path): | |
answer = input( | |
"The path {} has existed. \nInput 'y' (or hit Enter) to skip it, and input 'n' to re-write it [y/n]\n".format( | |
path | |
) | |
) | |
if not answer == "n": | |
return True | |
return False | |
def remove_older_ckpt(saved_model_name, checkpoint_dir, max_to_keep=5): | |
if os.path.exists(os.path.join(checkpoint_dir, "checkpoint")): | |
with open(os.path.join(checkpoint_dir, "checkpoint"), "r") as f: | |
ckpts = [x.strip() for x in f.readlines()] | |
else: | |
ckpts = [] | |
ckpts.append(saved_model_name) | |
for item in ckpts[:-max_to_keep]: | |
if os.path.exists(os.path.join(checkpoint_dir, item)): | |
os.remove(os.path.join(checkpoint_dir, item)) | |
with open(os.path.join(checkpoint_dir, "checkpoint"), "w") as f: | |
for item in ckpts[-max_to_keep:]: | |
f.write("{}\n".format(item)) | |
def set_all_random_seed(seed: int): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.random.manual_seed(seed) | |
def save_checkpoint( | |
args, | |
generator, | |
g_optimizer, | |
step, | |
discriminator=None, | |
d_optimizer=None, | |
max_to_keep=5, | |
): | |
saved_model_name = "model.ckpt-{}.pt".format(step) | |
checkpoint_path = os.path.join(args.checkpoint_dir, saved_model_name) | |
if discriminator and d_optimizer: | |
torch.save( | |
{ | |
"generator": generator.state_dict(), | |
"discriminator": discriminator.state_dict(), | |
"g_optimizer": g_optimizer.state_dict(), | |
"d_optimizer": d_optimizer.state_dict(), | |
"global_step": step, | |
}, | |
checkpoint_path, | |
) | |
else: | |
torch.save( | |
{ | |
"generator": generator.state_dict(), | |
"g_optimizer": g_optimizer.state_dict(), | |
"global_step": step, | |
}, | |
checkpoint_path, | |
) | |
print("Saved checkpoint: {}".format(checkpoint_path)) | |
if os.path.exists(os.path.join(args.checkpoint_dir, "checkpoint")): | |
with open(os.path.join(args.checkpoint_dir, "checkpoint"), "r") as f: | |
ckpts = [x.strip() for x in f.readlines()] | |
else: | |
ckpts = [] | |
ckpts.append(saved_model_name) | |
for item in ckpts[:-max_to_keep]: | |
if os.path.exists(os.path.join(args.checkpoint_dir, item)): | |
os.remove(os.path.join(args.checkpoint_dir, item)) | |
with open(os.path.join(args.checkpoint_dir, "checkpoint"), "w") as f: | |
for item in ckpts[-max_to_keep:]: | |
f.write("{}\n".format(item)) | |
def attempt_to_restore( | |
generator, g_optimizer, checkpoint_dir, discriminator=None, d_optimizer=None | |
): | |
checkpoint_list = os.path.join(checkpoint_dir, "checkpoint") | |
if os.path.exists(checkpoint_list): | |
checkpoint_filename = open(checkpoint_list).readlines()[-1].strip() | |
checkpoint_path = os.path.join(checkpoint_dir, "{}".format(checkpoint_filename)) | |
print("Restore from {}".format(checkpoint_path)) | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
if generator: | |
if not list(generator.state_dict().keys())[0].startswith("module."): | |
raw_dict = checkpoint["generator"] | |
clean_dict = OrderedDict() | |
for k, v in raw_dict.items(): | |
if k.startswith("module."): | |
clean_dict[k[7:]] = v | |
else: | |
clean_dict[k] = v | |
generator.load_state_dict(clean_dict) | |
else: | |
generator.load_state_dict(checkpoint["generator"]) | |
if g_optimizer: | |
g_optimizer.load_state_dict(checkpoint["g_optimizer"]) | |
global_step = 100000 | |
if discriminator and "discriminator" in checkpoint.keys(): | |
discriminator.load_state_dict(checkpoint["discriminator"]) | |
global_step = checkpoint["global_step"] | |
print("restore discriminator") | |
if d_optimizer and "d_optimizer" in checkpoint.keys(): | |
d_optimizer.load_state_dict(checkpoint["d_optimizer"]) | |
print("restore d_optimizer...") | |
else: | |
global_step = 0 | |
return global_step | |
class ExponentialMovingAverage(object): | |
def __init__(self, decay): | |
self.decay = decay | |
self.shadow = {} | |
def register(self, name, val): | |
self.shadow[name] = val.clone() | |
def update(self, name, x): | |
assert name in self.shadow | |
update_delta = self.shadow[name] - x | |
self.shadow[name] -= (1.0 - self.decay) * update_delta | |
def apply_moving_average(model, ema): | |
for name, param in model.named_parameters(): | |
if name in ema.shadow: | |
ema.update(name, param.data) | |
def register_model_to_ema(model, ema): | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
ema.register(name, param.data) | |
class YParams(HParams): | |
def __init__(self, yaml_file): | |
if not os.path.exists(yaml_file): | |
raise IOError("yaml file: {} is not existed".format(yaml_file)) | |
super().__init__() | |
self.d = collections.OrderedDict() | |
with open(yaml_file) as fp: | |
for _, v in yaml().load(fp).items(): | |
for k1, v1 in v.items(): | |
try: | |
if self.get(k1): | |
self.set_hparam(k1, v1) | |
else: | |
self.add_hparam(k1, v1) | |
self.d[k1] = v1 | |
except Exception: | |
import traceback | |
print(traceback.format_exc()) | |
# @property | |
def get_elements(self): | |
return self.d.items() | |
def override_config(base_config, new_config): | |
"""Update new configurations in the original dict with the new dict | |
Args: | |
base_config (dict): original dict to be overridden | |
new_config (dict): dict with new configurations | |
Returns: | |
dict: updated configuration dict | |
""" | |
for k, v in new_config.items(): | |
if type(v) == dict: | |
if k not in base_config.keys(): | |
base_config[k] = {} | |
base_config[k] = override_config(base_config[k], v) | |
else: | |
base_config[k] = v | |
return base_config | |
def get_lowercase_keys_config(cfg): | |
"""Change all keys in cfg to lower case | |
Args: | |
cfg (dict): dictionary that stores configurations | |
Returns: | |
dict: dictionary that stores configurations | |
""" | |
updated_cfg = dict() | |
for k, v in cfg.items(): | |
if type(v) == dict: | |
v = get_lowercase_keys_config(v) | |
updated_cfg[k.lower()] = v | |
return updated_cfg | |
def _load_config(config_fn, lowercase=False): | |
"""Load configurations into a dictionary | |
Args: | |
config_fn (str): path to configuration file | |
lowercase (bool, optional): whether changing keys to lower case. Defaults to False. | |
Returns: | |
dict: dictionary that stores configurations | |
""" | |
with open(config_fn, "r") as f: | |
data = f.read() | |
config_ = json5.loads(data) | |
if "base_config" in config_: | |
# load configurations from new path | |
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"]) | |
p_config_ = _load_config(p_config_path) | |
config_ = override_config(p_config_, config_) | |
if lowercase: | |
# change keys in config_ to lower case | |
config_ = get_lowercase_keys_config(config_) | |
return config_ | |
def load_config(config_fn, lowercase=False): | |
"""Load configurations into a dictionary | |
Args: | |
config_fn (str): path to configuration file | |
lowercase (bool, optional): _description_. Defaults to False. | |
Returns: | |
JsonHParams: an object that stores configurations | |
""" | |
config_ = _load_config(config_fn, lowercase=lowercase) | |
# create an JsonHParams object with configuration dict | |
cfg = JsonHParams(**config_) | |
return cfg | |
def save_config(save_path, cfg): | |
"""Save configurations into a json file | |
Args: | |
save_path (str): path to save configurations | |
cfg (dict): dictionary that stores configurations | |
""" | |
with open(save_path, "w") as f: | |
json5.dump( | |
cfg, f, ensure_ascii=False, indent=4, quote_keys=True, sort_keys=True | |
) | |
class JsonHParams: | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = JsonHParams(**v) | |
self[k] = v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return self.__dict__.__repr__() | |
class ValueWindow: | |
def __init__(self, window_size=100): | |
self._window_size = window_size | |
self._values = [] | |
def append(self, x): | |
self._values = self._values[-(self._window_size - 1) :] + [x] | |
def sum(self): | |
return sum(self._values) | |
def count(self): | |
return len(self._values) | |
def average(self): | |
return self.sum / max(1, self.count) | |
def reset(self): | |
self._values = [] | |
class Logger(object): | |
def __init__( | |
self, | |
filename, | |
level="info", | |
when="D", | |
backCount=10, | |
fmt="%(asctime)s : %(message)s", | |
): | |
self.level_relations = { | |
"debug": logging.DEBUG, | |
"info": logging.INFO, | |
"warning": logging.WARNING, | |
"error": logging.ERROR, | |
"crit": logging.CRITICAL, | |
} | |
if level == "debug": | |
fmt = "%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s" | |
self.logger = logging.getLogger(filename) | |
format_str = logging.Formatter(fmt) | |
self.logger.setLevel(self.level_relations.get(level)) | |
sh = logging.StreamHandler() | |
sh.setFormatter(format_str) | |
th = handlers.TimedRotatingFileHandler( | |
filename=filename, when=when, backupCount=backCount, encoding="utf-8" | |
) | |
th.setFormatter(format_str) | |
self.logger.addHandler(sh) | |
self.logger.addHandler(th) | |
self.logger.info( | |
"==========================New Starting Here==============================" | |
) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def slice_segments(x, ids_str, segment_size=4): | |
ret = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
idx_str = ids_str[i] | |
idx_end = idx_str + segment_size | |
ret[i] = x[i, :, idx_str:idx_end] | |
return ret | |
def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
b, d, t = x.size() | |
if x_lengths is None: | |
x_lengths = t | |
ids_str_max = x_lengths - segment_size + 1 | |
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) | |
ret = slice_segments(x, ids_str, segment_size) | |
return ret, ids_str | |
def subsequent_mask(length): | |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | |
return mask | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def generate_path(duration, mask): | |
""" | |
duration: [b, 1, t_x] | |
mask: [b, 1, t_y, t_x] | |
""" | |
device = duration.device | |
b, _, t_y, t_x = mask.shape | |
cum_duration = torch.cumsum(duration, -1) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
path = path.unsqueeze(1).transpose(2, 3) * mask | |
return path | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1.0 / norm_type) | |
return total_norm | |
def get_current_time(): | |
pass | |
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
""" | |
Args: | |
lengths: | |
A 1-D tensor containing sentence lengths. | |
max_len: | |
The length of masks. | |
Returns: | |
Return a 2-D bool tensor, where masked positions | |
are filled with `True` and non-masked positions are | |
filled with `False`. | |
>>> lengths = torch.tensor([1, 3, 2, 5]) | |
>>> make_pad_mask(lengths) | |
tensor([[False, True, True, True, True], | |
[False, False, False, True, True], | |
[False, False, True, True, True], | |
[False, False, False, False, False]]) | |
""" | |
assert lengths.ndim == 1, lengths.ndim | |
max_len = max(max_len, lengths.max()) | |
n = lengths.size(0) | |
seq_range = torch.arange(0, max_len, device=lengths.device) | |
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len) | |
return expaned_lengths >= lengths.unsqueeze(-1) | |