singing_voice_conversion / models /vocoders /gan /gan_vocoder_inference.py
RMSnow's picture
init and interface
df2accb
raw
history blame
3.55 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from utils.util import pad_mels_to_tensors, pad_f0_to_tensors
def vocoder_inference(cfg, model, mels, f0s=None, device=None, fast_inference=False):
"""Inference the vocoder
Args:
mels: A tensor of mel-specs with the shape (batch_size, num_mels, frames)
Returns:
audios: A tensor of audios with the shape (batch_size, seq_len)
"""
model.eval()
with torch.no_grad():
mels = mels.to(device)
if f0s != None:
f0s = f0s.to(device)
if f0s == None and not cfg.preprocess.extract_amplitude_phase:
output = model.forward(mels)
elif cfg.preprocess.extract_amplitude_phase:
(
_,
_,
_,
_,
output,
) = model.forward(mels)
else:
output = model.forward(mels, f0s)
return output.squeeze(1).detach().cpu()
def synthesis_audios(cfg, model, mels, f0s=None, batch_size=None, fast_inference=False):
"""Inference the vocoder
Args:
mels: A list of mel-specs
Returns:
audios: A list of audios
"""
# Get the device
device = next(model.parameters()).device
audios = []
# Pad the given list into tensors
mel_batches, mel_frames = pad_mels_to_tensors(mels, batch_size)
if f0s != None:
f0_batches = pad_f0_to_tensors(f0s, batch_size)
if f0s == None:
for mel_batch, mel_frame in zip(mel_batches, mel_frames):
for i in range(mel_batch.shape[0]):
mel = mel_batch[i]
frame = mel_frame[i]
audio = vocoder_inference(
cfg,
model,
mel.unsqueeze(0),
device=device,
fast_inference=fast_inference,
).squeeze(0)
# # Apply fade_out to make the sound more natural
# fade_out = torch.linspace(
# 1, 0, steps=20 * model.cfg.preprocess.hop_size
# ).cpu()
# calculate the audio length
audio_length = frame * model.cfg.preprocess.hop_size
audio = audio[:audio_length]
# audio[-20 * model.cfg.preprocess.hop_size :] *= fade_out
audios.append(audio)
else:
for mel_batch, f0_batch, mel_frame in zip(mel_batches, f0_batches, mel_frames):
for i in range(mel_batch.shape[0]):
mel = mel_batch[i]
f0 = f0_batch[i]
frame = mel_frame[i]
audio = vocoder_inference(
cfg,
model,
mel.unsqueeze(0),
f0s=f0.unsqueeze(0),
device=device,
fast_inference=fast_inference,
).squeeze(0)
# # Apply fade_out to make the sound more natural
# fade_out = torch.linspace(
# 1, 0, steps=20 * model.cfg.preprocess.hop_size
# ).cpu()
# calculate the audio length
audio_length = frame * model.cfg.preprocess.hop_length
audio = audio[:audio_length]
# audio[-20 * model.cfg.preprocess.hop_size :] *= fade_out
audios.append(audio)
return audios