Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import os | |
from tqdm import tqdm | |
import torchaudio | |
from glob import glob | |
from collections import defaultdict | |
from utils.util import has_existed | |
from utils.io import save_audio | |
from utils.audio_slicer import Slicer | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def split_to_utterances(language_dir, output_dir): | |
print("Splitting to utterances for {}...".format(language_dir)) | |
for wav_file in tqdm(glob("{}/*/*".format(language_dir))): | |
# Load waveform | |
singer_name, song_name = wav_file.split("/")[-2:] | |
song_name = song_name.split(".")[0] | |
waveform, fs = torchaudio.load(wav_file) | |
# Split | |
slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000) | |
chunks = slicer.slice(waveform) | |
for i, chunk in enumerate(chunks): | |
save_dir = os.path.join(output_dir, singer_name, song_name) | |
os.makedirs(save_dir, exist_ok=True) | |
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) | |
save_audio(output_file, chunk, fs) | |
def _main(dataset_path): | |
""" | |
Split to utterances | |
""" | |
utterance_dir = os.path.join(dataset_path, "utterances") | |
for lang in ["chinese", "western"]: | |
split_to_utterances(os.path.join(dataset_path, lang), utterance_dir) | |
def get_test_songs(): | |
golden_samples = GOLDEN_TEST_SAMPLES["opera"] | |
# every item is a tuple (singer, song) | |
golden_songs = [s.split("#")[:2] for s in golden_samples] | |
# singer#song, eg:fem_01#neg_01 | |
return golden_songs | |
def opera_statistics(data_dir): | |
singers = [] | |
songs = [] | |
singers2songs = defaultdict(lambda: defaultdict(list)) | |
singer_infos = glob(data_dir + "/*") | |
for singer_info in singer_infos: | |
singer = singer_info.split("/")[-1] | |
song_infos = glob(singer_info + "/*") | |
for song_info in song_infos: | |
song = song_info.split("/")[-1] | |
singers.append(singer) | |
songs.append(song) | |
utts = glob(song_info + "/*.wav") | |
for utt in utts: | |
uid = utt.split("/")[-1].split(".")[0] | |
singers2songs[singer][song].append(uid) | |
unique_singers = list(set(singers)) | |
unique_songs = list(set(songs)) | |
unique_singers.sort() | |
unique_songs.sort() | |
print( | |
"opera: {} singers, {} utterances ({} unique songs)".format( | |
len(unique_singers), len(songs), len(unique_songs) | |
) | |
) | |
print("Singers: \n{}".format("\t".join(unique_singers))) | |
return singers2songs, unique_singers | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing test samples for opera...\n") | |
if not os.path.exists(os.path.join(dataset_path, "utterances")): | |
print("Spliting into utterances...\n") | |
_main(dataset_path) | |
save_dir = os.path.join(output_path, "opera") | |
os.makedirs(save_dir, exist_ok=True) | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
singer_dict_file = os.path.join(save_dir, "singers.json") | |
utt2singer_file = os.path.join(save_dir, "utt2singer") | |
if ( | |
has_existed(train_output_file) | |
and has_existed(test_output_file) | |
and has_existed(singer_dict_file) | |
and has_existed(utt2singer_file) | |
): | |
return | |
utt2singer = open(utt2singer_file, "w") | |
# Load | |
opera_path = os.path.join(dataset_path, "utterances") | |
singers2songs, unique_singers = opera_statistics(opera_path) | |
test_songs = get_test_songs() | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
for singer, songs in tqdm(singers2songs.items()): | |
song_names = list(songs.keys()) | |
for chosen_song in song_names: | |
for chosen_uid in songs[chosen_song]: | |
res = { | |
"Dataset": "opera", | |
"Singer": singer, | |
"Uid": "{}#{}#{}".format(singer, chosen_song, chosen_uid), | |
} | |
res["Path"] = "{}/{}/{}.wav".format(singer, chosen_song, chosen_uid) | |
res["Path"] = os.path.join(opera_path, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if duration <= 1e-8: | |
continue | |
if ([singer, chosen_song]) in test_songs: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
else: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save train.json and test.json | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |
# Save singers.json | |
singer_lut = {name: i for i, name in enumerate(unique_singers)} | |
with open(singer_dict_file, "w") as f: | |
json.dump(singer_lut, f, indent=4, ensure_ascii=False) | |