Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import os | |
import glob | |
from tqdm import tqdm | |
import torchaudio | |
import pandas as pd | |
from glob import glob | |
from collections import defaultdict | |
from utils.io import save_audio | |
from utils.util import has_existed | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def save_utterance(output_file, waveform, fs, start, end, overlap=0.1): | |
""" | |
waveform: [#channel, audio_len] | |
start, end, overlap: seconds | |
""" | |
start = int((start - overlap) * fs) | |
end = int((end + overlap) * fs) | |
utterance = waveform[:, start:end] | |
save_audio(output_file, utterance, fs) | |
def split_to_utterances(language_dir, output_dir): | |
print("Splitting to utterances for {}...".format(language_dir)) | |
wav_dir = os.path.join(language_dir, "wav") | |
phoneme_dir = os.path.join(language_dir, "txt") | |
annot_dir = os.path.join(language_dir, "csv") | |
pitches = set() | |
for wav_file in tqdm(glob("{}/*.wav".format(wav_dir))): | |
# Load waveform | |
song_name = wav_file.split("/")[-1].split(".")[0] | |
waveform, fs = torchaudio.load(wav_file) | |
# Load utterances | |
phoneme_file = os.path.join(phoneme_dir, "{}.txt".format(song_name)) | |
with open(phoneme_file, "r") as f: | |
lines = f.readlines() | |
utterances = [l.strip().split() for l in lines] | |
utterances = [utt for utt in utterances if len(utt) > 0] | |
# Load annotation | |
annot_file = os.path.join(annot_dir, "{}.csv".format(song_name)) | |
annot_df = pd.read_csv(annot_file) | |
pitches = pitches.union(set(annot_df["pitch"])) | |
starts = annot_df["start"].tolist() | |
ends = annot_df["end"].tolist() | |
syllables = annot_df["syllable"].tolist() | |
# Split | |
curr = 0 | |
for i, phones in enumerate(utterances): | |
sz = len(phones) | |
assert phones[0] == syllables[curr] | |
assert phones[-1] == syllables[curr + sz - 1] | |
s = starts[curr] | |
e = ends[curr + sz - 1] | |
curr += sz | |
save_dir = os.path.join(output_dir, song_name) | |
os.makedirs(save_dir, exist_ok=True) | |
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) | |
save_utterance(output_file, waveform, fs, start=s, end=e) | |
def _main(dataset_path): | |
""" | |
Split to utterances | |
""" | |
utterance_dir = os.path.join(dataset_path, "utterances") | |
for lang in ["english", "korean"]: | |
split_to_utterances(os.path.join(dataset_path, lang), utterance_dir) | |
def get_test_songs(): | |
golden_samples = GOLDEN_TEST_SAMPLES["csd"] | |
# every item is a tuple (language, song) | |
golden_songs = [s.split("_")[:2] for s in golden_samples] | |
# language_song, eg: en_001a | |
return golden_songs | |
def csd_statistics(data_dir): | |
languages = [] | |
songs = [] | |
languages2songs = defaultdict(lambda: defaultdict(list)) | |
folder_infos = glob(data_dir + "/*") | |
for folder_info in folder_infos: | |
folder_info_split = folder_info.split("/")[-1] | |
language = folder_info_split[:2] | |
song = folder_info_split[2:] | |
languages.append(language) | |
songs.append(song) | |
utts = glob(folder_info + "/*") | |
for utt in utts: | |
uid = utt.split("/")[-1].split(".")[0] | |
languages2songs[language][song].append(uid) | |
unique_languages = list(set(languages)) | |
unique_songs = list(set(songs)) | |
unique_languages.sort() | |
unique_songs.sort() | |
print( | |
"csd: {} languages, {} utterances ({} unique songs)".format( | |
len(unique_languages), len(songs), len(unique_songs) | |
) | |
) | |
print("Languages: \n{}".format("\t".join(unique_languages))) | |
return languages2songs | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing test samples for csd...\n") | |
if not os.path.exists(os.path.join(dataset_path, "utterances")): | |
print("Spliting into utterances...\n") | |
_main(dataset_path) | |
save_dir = os.path.join(output_path, "csd") | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(test_output_file): | |
return | |
# Load | |
csd_path = os.path.join(dataset_path, "utterances") | |
language2songs = csd_statistics(csd_path) | |
test_songs = get_test_songs() | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
for language, songs in tqdm(language2songs.items()): | |
song_names = list(songs.keys()) | |
for chosen_song in song_names: | |
for chosen_uid in songs[chosen_song]: | |
res = { | |
"Dataset": "csd", | |
"Singer": "Female1_{}".format(language), | |
"Uid": "{}_{}_{}".format(language, chosen_song, chosen_uid), | |
} | |
res["Path"] = "{}{}/{}.wav".format(language, chosen_song, chosen_uid) | |
res["Path"] = os.path.join(csd_path, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if [language, chosen_song] in test_songs: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
else: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |