RMSnow's picture
add backend inference and inferface output
0883aa1
raw
history blame
4.46 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import librosa
from tqdm import tqdm
from collections import defaultdict
from utils.util import has_existed
from preprocessors import GOLDEN_TEST_SAMPLES
def get_test_songs():
golden_samples = GOLDEN_TEST_SAMPLES["m4singer"]
# every item is a tuple (singer, song)
golden_songs = [s.split("_")[:2] for s in golden_samples]
# singer_song, eg: Alto-1_美错
golden_songs = ["_".join(t) for t in golden_songs]
return golden_songs
def m4singer_statistics(meta):
singers = []
songs = []
singer2songs = defaultdict(lambda: defaultdict(list))
for utt in meta:
p, s, uid = utt["item_name"].split("#")
singers.append(p)
songs.append(s)
singer2songs[p][s].append(uid)
unique_singers = list(set(singers))
unique_songs = list(set(songs))
unique_singers.sort()
unique_songs.sort()
print(
"M4Singer: {} singers, {} utterances ({} unique songs)".format(
len(unique_singers), len(songs), len(unique_songs)
)
)
print("Singers: \n{}".format("\t".join(unique_singers)))
return singer2songs, unique_singers
def main(output_path, dataset_path):
print("-" * 10)
print("Preparing test samples for m4singer...\n")
save_dir = os.path.join(output_path, "m4singer")
os.makedirs(save_dir, exist_ok=True)
train_output_file = os.path.join(save_dir, "train.json")
test_output_file = os.path.join(save_dir, "test.json")
singer_dict_file = os.path.join(save_dir, "singers.json")
utt2singer_file = os.path.join(save_dir, "utt2singer")
if (
has_existed(train_output_file)
and has_existed(test_output_file)
and has_existed(singer_dict_file)
and has_existed(utt2singer_file)
):
return
utt2singer = open(utt2singer_file, "w")
# Load
m4singer_dir = dataset_path
meta_file = os.path.join(m4singer_dir, "meta.json")
with open(meta_file, "r", encoding="utf-8") as f:
meta = json.load(f)
singer2songs, unique_singers = m4singer_statistics(meta)
test_songs = get_test_songs()
# We select songs of standard samples as test songs
train = []
test = []
train_index_count = 0
test_index_count = 0
train_total_duration = 0
test_total_duration = 0
for singer, songs in tqdm(singer2songs.items()):
song_names = list(songs.keys())
for chosen_song in song_names:
chosen_song = chosen_song.replace(" ", "-")
for chosen_uid in songs[chosen_song]:
res = {
"Dataset": "m4singer",
"Singer": singer,
"Song": chosen_song,
"Uid": "{}_{}_{}".format(singer, chosen_song, chosen_uid),
}
res["Path"] = os.path.join(
m4singer_dir, "{}#{}/{}.wav".format(singer, chosen_song, chosen_uid)
)
assert os.path.exists(res["Path"])
duration = librosa.get_duration(filename=res["Path"])
res["Duration"] = duration
if "_".join([singer, chosen_song]) in test_songs:
res["index"] = test_index_count
test_total_duration += duration
test.append(res)
test_index_count += 1
else:
res["index"] = train_index_count
train_total_duration += duration
train.append(res)
train_index_count += 1
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"]))
print("#Train = {}, #Test = {}".format(len(train), len(test)))
print(
"#Train hours= {}, #Test hours= {}".format(
train_total_duration / 3600, test_total_duration / 3600
)
)
# Save train.json and test.json
with open(train_output_file, "w") as f:
json.dump(train, f, indent=4, ensure_ascii=False)
with open(test_output_file, "w") as f:
json.dump(test, f, indent=4, ensure_ascii=False)
# Save singers.json
singer_lut = {name: i for i, name in enumerate(unique_singers)}
with open(singer_dict_file, "w") as f:
json.dump(singer_lut, f, indent=4, ensure_ascii=False)