RMSnow's picture
add backend inference and inferface output
0883aa1
raw
history blame
3.53 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import spectral_norm
from modules.generic.conv import Conv1d
class ConvEncoder(nn.Module):
def __init__(self, in_channels, z_channels, spk_channels, num_dilation_layer=10):
super(ConvEncoder, self).__init__()
self.in_channels = in_channels
self.z_channels = z_channels
self.spk_channels = spk_channels
self.pre_process = Conv1d(in_channels, 512, kernel_size=3)
self.dilated_conv_layers = nn.ModuleList()
for i in range(num_dilation_layer):
dilation = 2**i
self.dilated_conv_layers.append(
DilatedConvBlock(512, 512, z_channels, spk_channels, dilation)
)
def forward(self, inputs, z, s):
inputs = inputs.transpose(1, 2)
outputs = self.pre_process(inputs)
print(inputs.shape)
for layer in self.dilated_conv_layers:
outputs = layer(outputs, z, s)
encoder_outputs = outputs.transpose(1, 2)
return encoder_outputs
class DilatedConvBlock(nn.Module):
"""A stack of dilated convolutions interspersed
with batch normalisation and ReLU activations"""
def __init__(self, in_channels, out_channels, z_channels, s_channels, dilation):
super(DilatedConvBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.z_channels = z_channels
self.s_channels = s_channels
self.conv1d = Conv1d(
in_channels, out_channels, kernel_size=3, dilation=dilation
)
self.batch_layer = BatchNorm1dLayer(out_channels, s_channels, z_channels)
def forward(self, inputs, z, s):
outputs = self.conv1d(inputs)
outputs = self.batch_layer(outputs, z, s)
return F.relu(outputs)
class BatchNorm1dLayer(nn.Module):
"""The latents z and speaker embedding s modulate the scale and
shift parameters of the batch normalisation layers"""
def __init__(self, num_features, s_channels=128, z_channels=128):
super().__init__()
self.num_features = num_features
self.s_channels = s_channels
self.z_channels = z_channels
self.batch_nrom = nn.BatchNorm1d(num_features, affine=False)
self.scale_layer = spectral_norm(nn.Linear(z_channels, num_features))
self.scale_layer.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.scale_layer.bias.data.zero_() # Initialise bias at 0
self.shift_layer = spectral_norm(nn.Linear(s_channels, num_features))
self.shift_layer.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.shift_layer.bias.data.zero_() # Initialise bias at 0
def forward(self, inputs, z, s):
outputs = self.batch_nrom(inputs)
scale = self.scale_layer(z)
scale = scale.view(-1, self.num_features, 1)
shift = self.shift_layer(s)
shift = shift.view(-1, self.num_features, 1)
outputs = scale * outputs + shift
return outputs
if __name__ == "__main__":
model = ConvEncoder(256, 64, 64)
encoder_inputs = torch.randn(2, 256, 10)
z = torch.randn(2, 64)
speaker = torch.randn(1, 64)
outputs, duration = model(encoder_inputs, z, speaker)
print(outputs.shape, duration.shape)