Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import spectral_norm | |
from modules.generic.conv import Conv1d | |
class ConvEncoder(nn.Module): | |
def __init__(self, in_channels, z_channels, spk_channels, num_dilation_layer=10): | |
super(ConvEncoder, self).__init__() | |
self.in_channels = in_channels | |
self.z_channels = z_channels | |
self.spk_channels = spk_channels | |
self.pre_process = Conv1d(in_channels, 512, kernel_size=3) | |
self.dilated_conv_layers = nn.ModuleList() | |
for i in range(num_dilation_layer): | |
dilation = 2**i | |
self.dilated_conv_layers.append( | |
DilatedConvBlock(512, 512, z_channels, spk_channels, dilation) | |
) | |
def forward(self, inputs, z, s): | |
inputs = inputs.transpose(1, 2) | |
outputs = self.pre_process(inputs) | |
print(inputs.shape) | |
for layer in self.dilated_conv_layers: | |
outputs = layer(outputs, z, s) | |
encoder_outputs = outputs.transpose(1, 2) | |
return encoder_outputs | |
class DilatedConvBlock(nn.Module): | |
"""A stack of dilated convolutions interspersed | |
with batch normalisation and ReLU activations""" | |
def __init__(self, in_channels, out_channels, z_channels, s_channels, dilation): | |
super(DilatedConvBlock, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.z_channels = z_channels | |
self.s_channels = s_channels | |
self.conv1d = Conv1d( | |
in_channels, out_channels, kernel_size=3, dilation=dilation | |
) | |
self.batch_layer = BatchNorm1dLayer(out_channels, s_channels, z_channels) | |
def forward(self, inputs, z, s): | |
outputs = self.conv1d(inputs) | |
outputs = self.batch_layer(outputs, z, s) | |
return F.relu(outputs) | |
class BatchNorm1dLayer(nn.Module): | |
"""The latents z and speaker embedding s modulate the scale and | |
shift parameters of the batch normalisation layers""" | |
def __init__(self, num_features, s_channels=128, z_channels=128): | |
super().__init__() | |
self.num_features = num_features | |
self.s_channels = s_channels | |
self.z_channels = z_channels | |
self.batch_nrom = nn.BatchNorm1d(num_features, affine=False) | |
self.scale_layer = spectral_norm(nn.Linear(z_channels, num_features)) | |
self.scale_layer.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02) | |
self.scale_layer.bias.data.zero_() # Initialise bias at 0 | |
self.shift_layer = spectral_norm(nn.Linear(s_channels, num_features)) | |
self.shift_layer.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02) | |
self.shift_layer.bias.data.zero_() # Initialise bias at 0 | |
def forward(self, inputs, z, s): | |
outputs = self.batch_nrom(inputs) | |
scale = self.scale_layer(z) | |
scale = scale.view(-1, self.num_features, 1) | |
shift = self.shift_layer(s) | |
shift = shift.view(-1, self.num_features, 1) | |
outputs = scale * outputs + shift | |
return outputs | |
if __name__ == "__main__": | |
model = ConvEncoder(256, 64, 64) | |
encoder_inputs = torch.randn(2, 256, 10) | |
z = torch.randn(2, 64) | |
speaker = torch.randn(1, 64) | |
outputs, duration = model(encoder_inputs, z, speaker) | |
print(outputs.shape, duration.shape) | |