Hecheng0625 commited on
Commit
b38e3ae
1 Parent(s): 4dfbe06

Update Amphion/models/ns3_codec/facodec.py

Browse files
Files changed (1) hide show
  1. Amphion/models/ns3_codec/facodec.py +170 -0
Amphion/models/ns3_codec/facodec.py CHANGED
@@ -591,3 +591,173 @@ class FACodecDecoder(nn.Module):
591
 
592
  def reset_parameters(self):
593
  self.apply(init_weights)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591
 
592
  def reset_parameters(self):
593
  self.apply(init_weights)
594
+
595
+
596
+ class FACodecRedecoder(nn.Module):
597
+ def __init__(
598
+ self,
599
+ in_channels=256,
600
+ upsample_initial_channel=1280,
601
+ up_ratios=(5, 5, 4, 2),
602
+ vq_num_q_c=2,
603
+ vq_num_q_p=1,
604
+ vq_num_q_r=3,
605
+ vq_dim=256,
606
+ codebook_size_prosody=10,
607
+ codebook_size_content=10,
608
+ codebook_size_residual=10,
609
+ ):
610
+ super().__init__()
611
+ self.hop_length = np.prod(up_ratios)
612
+ self.up_ratios = up_ratios
613
+
614
+ self.vq_num_q_p = vq_num_q_p
615
+ self.vq_num_q_c = vq_num_q_c
616
+ self.vq_num_q_r = vq_num_q_r
617
+
618
+ self.vq_dim = vq_dim
619
+
620
+ self.codebook_size_prosody = codebook_size_prosody
621
+ self.codebook_size_content = codebook_size_content
622
+ self.codebook_size_residual = codebook_size_residual
623
+
624
+ self.prosody_embs = nn.ModuleList()
625
+ for i in range(self.vq_num_q_p):
626
+ emb_tokens = nn.Embedding(
627
+ num_embeddings=2**self.codebook_size_prosody,
628
+ embedding_dim=self.vq_dim,
629
+ )
630
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
631
+ self.prosody_embs.append(emb_tokens)
632
+ self.content_embs = nn.ModuleList()
633
+ for i in range(self.vq_num_q_c):
634
+ emb_tokens = nn.Embedding(
635
+ num_embeddings=2**self.codebook_size_content,
636
+ embedding_dim=self.vq_dim,
637
+ )
638
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
639
+ self.content_embs.append(emb_tokens)
640
+ self.residual_embs = nn.ModuleList()
641
+ for i in range(self.vq_num_q_r):
642
+ emb_tokens = nn.Embedding(
643
+ num_embeddings=2**self.codebook_size_residual,
644
+ embedding_dim=self.vq_dim,
645
+ )
646
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
647
+ self.residual_embs.append(emb_tokens)
648
+
649
+ # Add first conv layer
650
+ channels = upsample_initial_channel
651
+ layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
652
+
653
+ # Add upsampling + MRF blocks
654
+ for i, stride in enumerate(up_ratios):
655
+ input_dim = channels // 2**i
656
+ output_dim = channels // 2 ** (i + 1)
657
+ layers += [DecoderBlock(input_dim, output_dim, stride)]
658
+
659
+ # Add final conv layer
660
+ layers += [
661
+ Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
662
+ WNConv1d(output_dim, 1, kernel_size=7, padding=3),
663
+ nn.Tanh(),
664
+ ]
665
+
666
+ self.model = nn.Sequential(*layers)
667
+
668
+ self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
669
+ self.timbre_linear.bias.data[:in_channels] = 1
670
+ self.timbre_linear.bias.data[in_channels:] = 0
671
+ self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
672
+
673
+ self.timbre_cond_prosody_enc = TransformerEncoder(
674
+ enc_emb_tokens=None,
675
+ encoder_layer=4,
676
+ encoder_hidden=256,
677
+ encoder_head=4,
678
+ conv_filter_size=1024,
679
+ conv_kernel_size=5,
680
+ encoder_dropout=0.1,
681
+ use_cln=True,
682
+ cfg=None,
683
+ )
684
+
685
+ def forward(
686
+ self,
687
+ vq,
688
+ speaker_embedding,
689
+ use_residual_code=False,
690
+ ):
691
+
692
+ x = 0
693
+
694
+ x_p = 0
695
+ for i in range(self.vq_num_q_p):
696
+ x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d)
697
+ spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1)
698
+ x_p = self.timbre_cond_prosody_enc(
699
+ x_p, key_padding_mask=None, condition=spk_cond
700
+ )
701
+ x = x + x_p
702
+
703
+ x_c = 0
704
+ for i in range(self.vq_num_q_c):
705
+ x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i])
706
+
707
+ x = x + x_c
708
+
709
+ if use_residual_code:
710
+
711
+ x_r = 0
712
+ for i in range(self.vq_num_q_r):
713
+ x_r = x_r + self.residual_embs[i](
714
+ vq[self.vq_num_q_p + self.vq_num_q_c + i]
715
+ )
716
+ x = x + x_r
717
+
718
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
719
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
720
+ x = x.transpose(1, 2)
721
+ x = self.timbre_norm(x)
722
+ x = x.transpose(1, 2)
723
+ x = x * gamma + beta
724
+ x = self.model(x)
725
+
726
+ return x
727
+
728
+ def vq2emb(self, vq, speaker_embedding, use_residual=True):
729
+
730
+ out = 0
731
+
732
+ x_t = 0
733
+ for i in range(self.vq_num_q_p):
734
+ x_t += self.prosody_embs[i](vq[i]) # (B, T, d)
735
+ spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1)
736
+ x_t = self.timbre_cond_prosody_enc(
737
+ x_t, key_padding_mask=None, condition=spk_cond
738
+ )
739
+
740
+ # prosody
741
+ out += x_t
742
+
743
+ # content
744
+ for i in range(self.vq_num_q_c):
745
+ out += self.content_embs[i](vq[self.vq_num_q_p + i])
746
+
747
+ # residual
748
+ if use_residual:
749
+ for i in range(self.vq_num_q_r):
750
+ out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i])
751
+
752
+ out = out.transpose(1, 2) # (B, T, d) -> (B, d, T)
753
+ return out
754
+
755
+ def inference(self, x, speaker_embedding):
756
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
757
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
758
+ x = x.transpose(1, 2)
759
+ x = self.timbre_norm(x)
760
+ x = x.transpose(1, 2)
761
+ x = x * gamma + beta
762
+ x = self.model(x)
763
+ return x