Spaces:
Running
on
Zero
Running
on
Zero
Hecheng0625
commited on
Update Amphion/models/ns3_codec/facodec.py
Browse files
Amphion/models/ns3_codec/facodec.py
CHANGED
@@ -10,6 +10,7 @@ from einops import rearrange
|
|
10 |
from einops.layers.torch import Rearrange
|
11 |
from .transformer import TransformerEncoder
|
12 |
from .gradient_reversal import GradientReversal
|
|
|
13 |
|
14 |
|
15 |
def init_weights(m):
|
@@ -761,3 +762,456 @@ class FACodecRedecoder(nn.Module):
|
|
761 |
x = x * gamma + beta
|
762 |
x = self.model(x)
|
763 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from einops.layers.torch import Rearrange
|
11 |
from .transformer import TransformerEncoder
|
12 |
from .gradient_reversal import GradientReversal
|
13 |
+
from .melspec import MelSpectrogram
|
14 |
|
15 |
|
16 |
def init_weights(m):
|
|
|
762 |
x = x * gamma + beta
|
763 |
x = self.model(x)
|
764 |
return x
|
765 |
+
|
766 |
+
|
767 |
+
class FACodecEncoderV2(nn.Module):
|
768 |
+
def __init__(
|
769 |
+
self,
|
770 |
+
ngf=32,
|
771 |
+
up_ratios=(2, 4, 5, 5),
|
772 |
+
out_channels=1024,
|
773 |
+
):
|
774 |
+
super().__init__()
|
775 |
+
self.hop_length = np.prod(up_ratios)
|
776 |
+
self.up_ratios = up_ratios
|
777 |
+
|
778 |
+
# Create first convolution
|
779 |
+
d_model = ngf
|
780 |
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
781 |
+
|
782 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
783 |
+
for stride in up_ratios:
|
784 |
+
d_model *= 2
|
785 |
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
786 |
+
|
787 |
+
# Create last convolution
|
788 |
+
self.block += [
|
789 |
+
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
790 |
+
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
791 |
+
]
|
792 |
+
|
793 |
+
# Wrap black into nn.Sequential
|
794 |
+
self.block = nn.Sequential(*self.block)
|
795 |
+
self.enc_dim = d_model
|
796 |
+
|
797 |
+
self.mel_transform = MelSpectrogram(
|
798 |
+
n_fft=1024,
|
799 |
+
num_mels=80,
|
800 |
+
sampling_rate=16000,
|
801 |
+
hop_size=200,
|
802 |
+
win_size=800,
|
803 |
+
fmin=0,
|
804 |
+
fmax=8000,
|
805 |
+
)
|
806 |
+
|
807 |
+
self.reset_parameters()
|
808 |
+
|
809 |
+
def forward(self, x):
|
810 |
+
out = self.block(x)
|
811 |
+
return out
|
812 |
+
|
813 |
+
def inference(self, x):
|
814 |
+
return self.block(x)
|
815 |
+
|
816 |
+
def get_prosody_feature(self, x):
|
817 |
+
return self.mel_transform(x.squeeze(1))[:, :20, :]
|
818 |
+
|
819 |
+
def remove_weight_norm(self):
|
820 |
+
"""Remove weight normalization module from all of the layers."""
|
821 |
+
|
822 |
+
def _remove_weight_norm(m):
|
823 |
+
try:
|
824 |
+
torch.nn.utils.remove_weight_norm(m)
|
825 |
+
except ValueError: # this module didn't have weight norm
|
826 |
+
return
|
827 |
+
|
828 |
+
self.apply(_remove_weight_norm)
|
829 |
+
|
830 |
+
def apply_weight_norm(self):
|
831 |
+
"""Apply weight normalization module from all of the layers."""
|
832 |
+
|
833 |
+
def _apply_weight_norm(m):
|
834 |
+
if isinstance(m, nn.Conv1d):
|
835 |
+
torch.nn.utils.weight_norm(m)
|
836 |
+
|
837 |
+
self.apply(_apply_weight_norm)
|
838 |
+
|
839 |
+
def reset_parameters(self):
|
840 |
+
self.apply(init_weights)
|
841 |
+
|
842 |
+
|
843 |
+
class FACodecDecoderV2(nn.Module):
|
844 |
+
def __init__(
|
845 |
+
self,
|
846 |
+
in_channels=256,
|
847 |
+
upsample_initial_channel=1536,
|
848 |
+
ngf=32,
|
849 |
+
up_ratios=(5, 5, 4, 2),
|
850 |
+
vq_num_q_c=2,
|
851 |
+
vq_num_q_p=1,
|
852 |
+
vq_num_q_r=3,
|
853 |
+
vq_dim=1024,
|
854 |
+
vq_commit_weight=0.005,
|
855 |
+
vq_weight_init=False,
|
856 |
+
vq_full_commit_loss=False,
|
857 |
+
codebook_dim=8,
|
858 |
+
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
859 |
+
codebook_size_content=10,
|
860 |
+
codebook_size_residual=10,
|
861 |
+
quantizer_dropout=0.0,
|
862 |
+
dropout_type="linear",
|
863 |
+
use_gr_content_f0=False,
|
864 |
+
use_gr_prosody_phone=False,
|
865 |
+
use_gr_residual_f0=False,
|
866 |
+
use_gr_residual_phone=False,
|
867 |
+
use_gr_x_timbre=False,
|
868 |
+
use_random_mask_residual=True,
|
869 |
+
prob_random_mask_residual=0.75,
|
870 |
+
):
|
871 |
+
super().__init__()
|
872 |
+
self.hop_length = np.prod(up_ratios)
|
873 |
+
self.ngf = ngf
|
874 |
+
self.up_ratios = up_ratios
|
875 |
+
|
876 |
+
self.use_random_mask_residual = use_random_mask_residual
|
877 |
+
self.prob_random_mask_residual = prob_random_mask_residual
|
878 |
+
|
879 |
+
self.vq_num_q_p = vq_num_q_p
|
880 |
+
self.vq_num_q_c = vq_num_q_c
|
881 |
+
self.vq_num_q_r = vq_num_q_r
|
882 |
+
|
883 |
+
self.codebook_size_prosody = codebook_size_prosody
|
884 |
+
self.codebook_size_content = codebook_size_content
|
885 |
+
self.codebook_size_residual = codebook_size_residual
|
886 |
+
|
887 |
+
quantizer_class = ResidualVQ
|
888 |
+
|
889 |
+
self.quantizer = nn.ModuleList()
|
890 |
+
|
891 |
+
# prosody
|
892 |
+
quantizer = quantizer_class(
|
893 |
+
num_quantizers=vq_num_q_p,
|
894 |
+
dim=vq_dim,
|
895 |
+
codebook_size=codebook_size_prosody,
|
896 |
+
codebook_dim=codebook_dim,
|
897 |
+
threshold_ema_dead_code=2,
|
898 |
+
commitment=vq_commit_weight,
|
899 |
+
weight_init=vq_weight_init,
|
900 |
+
full_commit_loss=vq_full_commit_loss,
|
901 |
+
quantizer_dropout=quantizer_dropout,
|
902 |
+
dropout_type=dropout_type,
|
903 |
+
)
|
904 |
+
self.quantizer.append(quantizer)
|
905 |
+
|
906 |
+
# phone
|
907 |
+
quantizer = quantizer_class(
|
908 |
+
num_quantizers=vq_num_q_c,
|
909 |
+
dim=vq_dim,
|
910 |
+
codebook_size=codebook_size_content,
|
911 |
+
codebook_dim=codebook_dim,
|
912 |
+
threshold_ema_dead_code=2,
|
913 |
+
commitment=vq_commit_weight,
|
914 |
+
weight_init=vq_weight_init,
|
915 |
+
full_commit_loss=vq_full_commit_loss,
|
916 |
+
quantizer_dropout=quantizer_dropout,
|
917 |
+
dropout_type=dropout_type,
|
918 |
+
)
|
919 |
+
self.quantizer.append(quantizer)
|
920 |
+
|
921 |
+
# residual
|
922 |
+
if self.vq_num_q_r > 0:
|
923 |
+
quantizer = quantizer_class(
|
924 |
+
num_quantizers=vq_num_q_r,
|
925 |
+
dim=vq_dim,
|
926 |
+
codebook_size=codebook_size_residual,
|
927 |
+
codebook_dim=codebook_dim,
|
928 |
+
threshold_ema_dead_code=2,
|
929 |
+
commitment=vq_commit_weight,
|
930 |
+
weight_init=vq_weight_init,
|
931 |
+
full_commit_loss=vq_full_commit_loss,
|
932 |
+
quantizer_dropout=quantizer_dropout,
|
933 |
+
dropout_type=dropout_type,
|
934 |
+
)
|
935 |
+
self.quantizer.append(quantizer)
|
936 |
+
|
937 |
+
# Add first conv layer
|
938 |
+
channels = upsample_initial_channel
|
939 |
+
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
940 |
+
|
941 |
+
# Add upsampling + MRF blocks
|
942 |
+
for i, stride in enumerate(up_ratios):
|
943 |
+
input_dim = channels // 2**i
|
944 |
+
output_dim = channels // 2 ** (i + 1)
|
945 |
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
946 |
+
|
947 |
+
# Add final conv layer
|
948 |
+
layers += [
|
949 |
+
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
950 |
+
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
951 |
+
nn.Tanh(),
|
952 |
+
]
|
953 |
+
|
954 |
+
self.model = nn.Sequential(*layers)
|
955 |
+
|
956 |
+
self.timbre_encoder = TransformerEncoder(
|
957 |
+
enc_emb_tokens=None,
|
958 |
+
encoder_layer=4,
|
959 |
+
encoder_hidden=256,
|
960 |
+
encoder_head=4,
|
961 |
+
conv_filter_size=1024,
|
962 |
+
conv_kernel_size=5,
|
963 |
+
encoder_dropout=0.1,
|
964 |
+
use_cln=False,
|
965 |
+
)
|
966 |
+
|
967 |
+
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
968 |
+
self.timbre_linear.bias.data[:in_channels] = 1
|
969 |
+
self.timbre_linear.bias.data[in_channels:] = 0
|
970 |
+
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
971 |
+
|
972 |
+
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
973 |
+
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
974 |
+
|
975 |
+
self.use_gr_content_f0 = use_gr_content_f0
|
976 |
+
self.use_gr_prosody_phone = use_gr_prosody_phone
|
977 |
+
self.use_gr_residual_f0 = use_gr_residual_f0
|
978 |
+
self.use_gr_residual_phone = use_gr_residual_phone
|
979 |
+
self.use_gr_x_timbre = use_gr_x_timbre
|
980 |
+
|
981 |
+
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
982 |
+
self.res_f0_predictor = nn.Sequential(
|
983 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
984 |
+
)
|
985 |
+
|
986 |
+
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
987 |
+
self.res_phone_predictor = nn.Sequential(
|
988 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
989 |
+
)
|
990 |
+
|
991 |
+
if self.use_gr_content_f0:
|
992 |
+
self.content_f0_predictor = nn.Sequential(
|
993 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
994 |
+
)
|
995 |
+
|
996 |
+
if self.use_gr_prosody_phone:
|
997 |
+
self.prosody_phone_predictor = nn.Sequential(
|
998 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
999 |
+
)
|
1000 |
+
|
1001 |
+
if self.use_gr_x_timbre:
|
1002 |
+
self.x_timbre_predictor = nn.Sequential(
|
1003 |
+
GradientReversal(alpha=1),
|
1004 |
+
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
self.melspec_linear = nn.Linear(20, 256)
|
1008 |
+
self.melspec_encoder = TransformerEncoder(
|
1009 |
+
enc_emb_tokens=None,
|
1010 |
+
encoder_layer=4,
|
1011 |
+
encoder_hidden=256,
|
1012 |
+
encoder_head=4,
|
1013 |
+
conv_filter_size=1024,
|
1014 |
+
conv_kernel_size=5,
|
1015 |
+
encoder_dropout=0.1,
|
1016 |
+
use_cln=False,
|
1017 |
+
cfg=None,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
self.reset_parameters()
|
1021 |
+
|
1022 |
+
def quantize(self, x, prosody_feature, n_quantizers=None):
|
1023 |
+
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
1024 |
+
|
1025 |
+
# prosody
|
1026 |
+
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
|
1027 |
+
f0_input = self.melspec_linear(f0_input)
|
1028 |
+
f0_input = self.melspec_encoder(f0_input, None, None)
|
1029 |
+
f0_input = f0_input.transpose(1, 2)
|
1030 |
+
f0_quantizer = self.quantizer[0]
|
1031 |
+
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
1032 |
+
outs += out
|
1033 |
+
qs.append(q)
|
1034 |
+
quantized_buf.append(quantized.sum(0))
|
1035 |
+
commit_loss.append(commit)
|
1036 |
+
|
1037 |
+
# phone
|
1038 |
+
phone_input = x
|
1039 |
+
phone_quantizer = self.quantizer[1]
|
1040 |
+
out, q, commit, quantized = phone_quantizer(
|
1041 |
+
phone_input, n_quantizers=n_quantizers
|
1042 |
+
)
|
1043 |
+
outs += out
|
1044 |
+
qs.append(q)
|
1045 |
+
quantized_buf.append(quantized.sum(0))
|
1046 |
+
commit_loss.append(commit)
|
1047 |
+
|
1048 |
+
# residual
|
1049 |
+
if self.vq_num_q_r > 0:
|
1050 |
+
residual_quantizer = self.quantizer[2]
|
1051 |
+
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
1052 |
+
out, q, commit, quantized = residual_quantizer(
|
1053 |
+
residual_input, n_quantizers=n_quantizers
|
1054 |
+
)
|
1055 |
+
outs += out
|
1056 |
+
qs.append(q)
|
1057 |
+
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
1058 |
+
commit_loss.append(commit)
|
1059 |
+
|
1060 |
+
qs = torch.cat(qs, dim=0)
|
1061 |
+
commit_loss = torch.cat(commit_loss, dim=0)
|
1062 |
+
return outs, qs, commit_loss, quantized_buf
|
1063 |
+
|
1064 |
+
def forward(
|
1065 |
+
self,
|
1066 |
+
x,
|
1067 |
+
prosody_feature,
|
1068 |
+
vq=True,
|
1069 |
+
get_vq=False,
|
1070 |
+
eval_vq=True,
|
1071 |
+
speaker_embedding=None,
|
1072 |
+
n_quantizers=None,
|
1073 |
+
quantized=None,
|
1074 |
+
):
|
1075 |
+
if get_vq:
|
1076 |
+
return self.quantizer.get_emb()
|
1077 |
+
if vq is True:
|
1078 |
+
if eval_vq:
|
1079 |
+
self.quantizer.eval()
|
1080 |
+
x_timbre = x
|
1081 |
+
outs, qs, commit_loss, quantized_buf = self.quantize(
|
1082 |
+
x, prosody_feature, n_quantizers=n_quantizers
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
x_timbre = x_timbre.transpose(1, 2)
|
1086 |
+
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
1087 |
+
x_timbre = x_timbre.transpose(1, 2)
|
1088 |
+
spk_embs = torch.mean(x_timbre, dim=2)
|
1089 |
+
return outs, qs, commit_loss, quantized_buf, spk_embs
|
1090 |
+
|
1091 |
+
out = {}
|
1092 |
+
|
1093 |
+
layer_0 = quantized[0]
|
1094 |
+
f0, uv = self.f0_predictor(layer_0)
|
1095 |
+
f0 = rearrange(f0, "... 1 -> ...")
|
1096 |
+
uv = rearrange(uv, "... 1 -> ...")
|
1097 |
+
|
1098 |
+
layer_1 = quantized[1]
|
1099 |
+
(phone,) = self.phone_predictor(layer_1)
|
1100 |
+
|
1101 |
+
out = {"f0": f0, "uv": uv, "phone": phone}
|
1102 |
+
|
1103 |
+
if self.use_gr_prosody_phone:
|
1104 |
+
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
1105 |
+
out["prosody_phone"] = prosody_phone
|
1106 |
+
|
1107 |
+
if self.use_gr_content_f0:
|
1108 |
+
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
1109 |
+
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
1110 |
+
content_uv = rearrange(content_uv, "... 1 -> ...")
|
1111 |
+
out["content_f0"] = content_f0
|
1112 |
+
out["content_uv"] = content_uv
|
1113 |
+
|
1114 |
+
if self.vq_num_q_r > 0:
|
1115 |
+
layer_2 = quantized[2]
|
1116 |
+
|
1117 |
+
if self.use_gr_residual_f0:
|
1118 |
+
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
1119 |
+
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
1120 |
+
res_uv = rearrange(res_uv, "... 1 -> ...")
|
1121 |
+
out["res_f0"] = res_f0
|
1122 |
+
out["res_uv"] = res_uv
|
1123 |
+
|
1124 |
+
if self.use_gr_residual_phone:
|
1125 |
+
(res_phone,) = self.res_phone_predictor(layer_2)
|
1126 |
+
out["res_phone"] = res_phone
|
1127 |
+
|
1128 |
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
1129 |
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
1130 |
+
if self.vq_num_q_r > 0:
|
1131 |
+
if self.use_random_mask_residual:
|
1132 |
+
bsz = quantized[2].shape[0]
|
1133 |
+
res_mask = np.random.choice(
|
1134 |
+
[0, 1],
|
1135 |
+
size=bsz,
|
1136 |
+
p=[
|
1137 |
+
self.prob_random_mask_residual,
|
1138 |
+
1 - self.prob_random_mask_residual,
|
1139 |
+
],
|
1140 |
+
)
|
1141 |
+
res_mask = (
|
1142 |
+
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
1143 |
+
) # (B, 1, 1)
|
1144 |
+
res_mask = res_mask.to(
|
1145 |
+
device=quantized[2].device, dtype=quantized[2].dtype
|
1146 |
+
)
|
1147 |
+
x = (
|
1148 |
+
quantized[0].detach()
|
1149 |
+
+ quantized[1].detach()
|
1150 |
+
+ quantized[2] * res_mask
|
1151 |
+
)
|
1152 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
1153 |
+
else:
|
1154 |
+
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
1155 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
1156 |
+
else:
|
1157 |
+
x = quantized[0].detach() + quantized[1].detach()
|
1158 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
1159 |
+
|
1160 |
+
if self.use_gr_x_timbre:
|
1161 |
+
(x_timbre,) = self.x_timbre_predictor(x)
|
1162 |
+
out["x_timbre"] = x_timbre
|
1163 |
+
|
1164 |
+
x = x.transpose(1, 2)
|
1165 |
+
x = self.timbre_norm(x)
|
1166 |
+
x = x.transpose(1, 2)
|
1167 |
+
x = x * gamma + beta
|
1168 |
+
|
1169 |
+
x = self.model(x)
|
1170 |
+
out["audio"] = x
|
1171 |
+
|
1172 |
+
return out
|
1173 |
+
|
1174 |
+
def vq2emb(self, vq, use_residual=True):
|
1175 |
+
# vq: [num_quantizer, B, T]
|
1176 |
+
self.quantizer = self.quantizer.eval()
|
1177 |
+
out = 0
|
1178 |
+
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
1179 |
+
out += self.quantizer[1].vq2emb(
|
1180 |
+
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
1181 |
+
)
|
1182 |
+
if self.vq_num_q_r > 0 and use_residual:
|
1183 |
+
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
1184 |
+
return out
|
1185 |
+
|
1186 |
+
def inference(self, x, speaker_embedding):
|
1187 |
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
1188 |
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
1189 |
+
x = x.transpose(1, 2)
|
1190 |
+
x = self.timbre_norm(x)
|
1191 |
+
x = x.transpose(1, 2)
|
1192 |
+
x = x * gamma + beta
|
1193 |
+
x = self.model(x)
|
1194 |
+
return x
|
1195 |
+
|
1196 |
+
def remove_weight_norm(self):
|
1197 |
+
"""Remove weight normalization module from all of the layers."""
|
1198 |
+
|
1199 |
+
def _remove_weight_norm(m):
|
1200 |
+
try:
|
1201 |
+
torch.nn.utils.remove_weight_norm(m)
|
1202 |
+
except ValueError: # this module didn't have weight norm
|
1203 |
+
return
|
1204 |
+
|
1205 |
+
self.apply(_remove_weight_norm)
|
1206 |
+
|
1207 |
+
def apply_weight_norm(self):
|
1208 |
+
"""Apply weight normalization module from all of the layers."""
|
1209 |
+
|
1210 |
+
def _apply_weight_norm(m):
|
1211 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
1212 |
+
torch.nn.utils.weight_norm(m)
|
1213 |
+
|
1214 |
+
self.apply(_apply_weight_norm)
|
1215 |
+
|
1216 |
+
def reset_parameters(self):
|
1217 |
+
self.apply(init_weights)
|