Spaces:
Configuration error
Configuration error
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import json | |
| import torchaudio | |
| from tqdm import tqdm | |
| from glob import glob | |
| from collections import defaultdict | |
| from utils.util import has_existed | |
| def libritts_statistics(data_dir): | |
| speakers = [] | |
| distribution2speakers2pharases2utts = defaultdict( | |
| lambda: defaultdict(lambda: defaultdict(list)) | |
| ) | |
| distribution_infos = glob(data_dir + "/*") | |
| for distribution_info in distribution_infos: | |
| distribution = distribution_info.split("/")[-1] | |
| print(distribution) | |
| speaker_infos = glob(distribution_info + "/*") | |
| if len(speaker_infos) == 0: | |
| continue | |
| for speaker_info in speaker_infos: | |
| speaker = speaker_info.split("/")[-1] | |
| speakers.append(speaker) | |
| pharase_infos = glob(speaker_info + "/*") | |
| for pharase_info in pharase_infos: | |
| pharase = pharase_info.split("/")[-1] | |
| utts = glob(pharase_info + "/*.wav") | |
| for utt in utts: | |
| uid = utt.split("/")[-1].split(".")[0] | |
| distribution2speakers2pharases2utts[distribution][speaker][ | |
| pharase | |
| ].append(uid) | |
| unique_speakers = list(set(speakers)) | |
| unique_speakers.sort() | |
| print("Speakers: \n{}".format("\t".join(unique_speakers))) | |
| return distribution2speakers2pharases2utts, unique_speakers | |
| def main(output_path, dataset_path): | |
| print("-" * 10) | |
| print("Preparing samples for libritts...\n") | |
| save_dir = os.path.join(output_path, "libritts") | |
| os.makedirs(save_dir, exist_ok=True) | |
| train_output_file = os.path.join(save_dir, "train.json") | |
| test_output_file = os.path.join(save_dir, "test.json") | |
| valid_output_file = os.path.join(save_dir, "valid.json") | |
| singer_dict_file = os.path.join(save_dir, "singers.json") | |
| utt2singer_file = os.path.join(save_dir, "utt2singer") | |
| if has_existed(train_output_file): | |
| return | |
| utt2singer = open(utt2singer_file, "w") | |
| # Load | |
| libritts_path = dataset_path | |
| distribution2speakers2pharases2utts, unique_speakers = libritts_statistics( | |
| libritts_path | |
| ) | |
| # We select pharases of standard spekaer as test songs | |
| train = [] | |
| test = [] | |
| valid = [] | |
| train_index_count = 0 | |
| test_index_count = 0 | |
| valid_index_count = 0 | |
| train_total_duration = 0 | |
| test_total_duration = 0 | |
| valid_total_duration = 0 | |
| for distribution, speakers2pharases2utts in tqdm( | |
| distribution2speakers2pharases2utts.items() | |
| ): | |
| for speaker, pharases2utts in tqdm(speakers2pharases2utts.items()): | |
| pharase_names = list(pharases2utts.keys()) | |
| for chosen_pharase in pharase_names: | |
| for chosen_uid in pharases2utts[chosen_pharase]: | |
| res = { | |
| "Dataset": "libritts", | |
| "Singer": speaker, | |
| "Uid": "{}#{}#{}#{}".format( | |
| distribution, speaker, chosen_pharase, chosen_uid | |
| ), | |
| } | |
| res["Path"] = "{}/{}/{}/{}.wav".format( | |
| distribution, speaker, chosen_pharase, chosen_uid | |
| ) | |
| res["Path"] = os.path.join(libritts_path, res["Path"]) | |
| assert os.path.exists(res["Path"]) | |
| text_file_path = os.path.join( | |
| libritts_path, | |
| distribution, | |
| speaker, | |
| chosen_pharase, | |
| chosen_uid + ".normalized.txt", | |
| ) | |
| with open(text_file_path, "r") as f: | |
| lines = f.readlines() | |
| assert len(lines) == 1 | |
| text = lines[0].strip() | |
| res["Text"] = text | |
| waveform, sample_rate = torchaudio.load(res["Path"]) | |
| duration = waveform.size(-1) / sample_rate | |
| res["Duration"] = duration | |
| if "test" in distribution: | |
| res["index"] = test_index_count | |
| test_total_duration += duration | |
| test.append(res) | |
| test_index_count += 1 | |
| elif "train" in distribution: | |
| res["index"] = train_index_count | |
| train_total_duration += duration | |
| train.append(res) | |
| train_index_count += 1 | |
| elif "dev" in distribution: | |
| res["index"] = valid_index_count | |
| valid_total_duration += duration | |
| valid.append(res) | |
| valid_index_count += 1 | |
| utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) | |
| print( | |
| "#Train = {}, #Test = {}, #Valid = {}".format(len(train), len(test), len(valid)) | |
| ) | |
| print( | |
| "#Train hours= {}, #Test hours= {}, #Valid hours= {}".format( | |
| train_total_duration / 3600, | |
| test_total_duration / 3600, | |
| valid_total_duration / 3600, | |
| ) | |
| ) | |
| # Save train.json and test.json | |
| with open(train_output_file, "w") as f: | |
| json.dump(train, f, indent=4, ensure_ascii=False) | |
| with open(test_output_file, "w") as f: | |
| json.dump(test, f, indent=4, ensure_ascii=False) | |
| with open(valid_output_file, "w") as f: | |
| json.dump(valid, f, indent=4, ensure_ascii=False) | |
| # Save singers.json | |
| singer_lut = {name: i for i, name in enumerate(unique_speakers)} | |
| with open(singer_dict_file, "w") as f: | |
| json.dump(singer_lut, f, indent=4, ensure_ascii=False) | |