Spaces:
Running
Running
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""Positonal Encoding Module.""" | |
import math | |
from typing import Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
class PositionalEncoding(torch.nn.Module): | |
"""Positional encoding. | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) | |
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) | |
""" | |
def __init__( | |
self, | |
d_model: int, | |
dropout_rate: float, | |
max_len: int = 5000, | |
reverse: bool = False, | |
): | |
"""Construct an PositionalEncoding object.""" | |
super().__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.max_len = max_len | |
self.pe = torch.zeros(self.max_len, self.d_model) | |
position = torch.arange(0, self.max_len, dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
self.pe[:, 0::2] = torch.sin(position * div_term) | |
self.pe[:, 1::2] = torch.cos(position * div_term) | |
self.pe = self.pe.unsqueeze(0) | |
def forward( | |
self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
offset (int, torch.tensor): position offset | |
Returns: | |
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
torch.Tensor: for compatibility to RelPositionalEncoding | |
""" | |
self.pe = self.pe.to(x.device) | |
pos_emb = self.position_encoding(offset, x.size(1), False) | |
x = x * self.xscale + pos_emb | |
return self.dropout(x), self.dropout(pos_emb) | |
def position_encoding( | |
self, offset: Union[int, torch.Tensor], size: int, apply_dropout: bool = True | |
) -> torch.Tensor: | |
"""For getting encoding in a streaming fashion | |
Attention!!!!! | |
we apply dropout only once at the whole utterance level in a none | |
streaming way, but will call this function several times with | |
increasing input size in a streaming scenario, so the dropout will | |
be applied several times. | |
Args: | |
offset (int or torch.tensor): start offset | |
size (int): required size of position encoding | |
Returns: | |
torch.Tensor: Corresponding encoding | |
""" | |
# How to subscript a Union type: | |
# https://github.com/pytorch/pytorch/issues/69434 | |
if isinstance(offset, int): | |
assert offset + size < self.max_len | |
pos_emb = self.pe[:, offset : offset + size] | |
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar | |
assert offset + size < self.max_len | |
pos_emb = self.pe[:, offset : offset + size] | |
else: # for batched streaming decoding on GPU | |
assert torch.max(offset) + size < self.max_len | |
index = offset.unsqueeze(1) + torch.arange(0, size).to( | |
offset.device | |
) # B X T | |
flag = index > 0 | |
# remove negative offset | |
index = index * flag | |
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model | |
if apply_dropout: | |
pos_emb = self.dropout(pos_emb) | |
return pos_emb | |
class RelPositionalEncoding(PositionalEncoding): | |
"""Relative positional encoding module. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
"""Initialize class.""" | |
super().__init__(d_model, dropout_rate, max_len, reverse=True) | |
def forward( | |
self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
torch.Tensor: Positional embedding tensor (1, time, `*`). | |
""" | |
self.pe = self.pe.to(x.device) | |
x = x * self.xscale | |
pos_emb = self.position_encoding(offset, x.size(1), False) | |
return self.dropout(x), self.dropout(pos_emb) | |
class NoPositionalEncoding(torch.nn.Module): | |
"""No position encoding""" | |
def __init__(self, d_model: int, dropout_rate: float): | |
super().__init__() | |
self.d_model = d_model | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
def forward( | |
self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Just return zero vector for interface compatibility""" | |
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) | |
return self.dropout(x), pos_emb | |
def position_encoding( | |
self, offset: Union[int, torch.Tensor], size: int | |
) -> torch.Tensor: | |
return torch.zeros(1, size, self.d_model) | |