Spaces:
Running
Running
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
import torch | |
import torch.nn.functional as F | |
class CTC(torch.nn.Module): | |
"""CTC module""" | |
def __init__( | |
self, | |
odim: int, | |
encoder_output_size: int, | |
dropout_rate: float = 0.0, | |
reduce: bool = True, | |
): | |
"""Construct CTC module | |
Args: | |
odim: dimension of outputs | |
encoder_output_size: number of encoder projection units | |
dropout_rate: dropout rate (0.0 ~ 1.0) | |
reduce: reduce the CTC loss into a scalar | |
""" | |
super().__init__() | |
eprojs = encoder_output_size | |
self.dropout_rate = dropout_rate | |
self.ctc_lo = torch.nn.Linear(eprojs, odim) | |
reduction_type = "sum" if reduce else "none" | |
self.ctc_loss = torch.nn.CTCLoss(reduction=reduction_type) | |
def forward( | |
self, | |
hs_pad: torch.Tensor, | |
hlens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_lens: torch.Tensor, | |
) -> torch.Tensor: | |
"""Calculate CTC loss. | |
Args: | |
hs_pad: batch of padded hidden state sequences (B, Tmax, D) | |
hlens: batch of lengths of hidden state sequences (B) | |
ys_pad: batch of padded character id sequence tensor (B, Lmax) | |
ys_lens: batch of lengths of character sequence (B) | |
""" | |
# hs_pad: (B, L, NProj) -> ys_hat: (B, L, Nvocab) | |
ys_hat = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate)) | |
# ys_hat: (B, L, D) -> (L, B, D) | |
ys_hat = ys_hat.transpose(0, 1) | |
ys_hat = ys_hat.log_softmax(2) | |
loss = self.ctc_loss(ys_hat, ys_pad, hlens, ys_lens) | |
# Batch-size average | |
loss = loss / ys_hat.size(1) | |
return loss | |
def log_softmax(self, hs_pad: torch.Tensor) -> torch.Tensor: | |
"""log_softmax of frame activations | |
Args: | |
Tensor hs_pad: 3d tensor (B, Tmax, eprojs) | |
Returns: | |
torch.Tensor: log softmax applied 3d tensor (B, Tmax, odim) | |
""" | |
return F.log_softmax(self.ctc_lo(hs_pad), dim=2) | |
def argmax(self, hs_pad: torch.Tensor) -> torch.Tensor: | |
"""argmax of frame activations | |
Args: | |
torch.Tensor hs_pad: 3d tensor (B, Tmax, eprojs) | |
Returns: | |
torch.Tensor: argmax applied 2d tensor (B, Tmax) | |
""" | |
return torch.argmax(self.ctc_lo(hs_pad), dim=2) | |