Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This module is modified from [Whisper](https://github.com/openai/whisper.git). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{openai-whisper, | |
# author = {Alec Radford and | |
# Jong Wook Kim and | |
# Tao Xu and | |
# Greg Brockman and | |
# Christine McLeavey and | |
# Ilya Sutskever}, | |
# title = {Robust Speech Recognition via Large-Scale Weak Supervision}, | |
# booktitle = {{ICML}}, | |
# series = {Proceedings of Machine Learning Research}, | |
# volume = {202}, | |
# pages = {28492--28518}, | |
# publisher = {{PMLR}}, | |
# year = {2023} | |
# } | |
# ``` | |
# | |
import zlib | |
from typing import Iterator, TextIO | |
def exact_div(x, y): | |
assert x % y == 0 | |
return x // y | |
def str2bool(string): | |
str2val = {"True": True, "False": False} | |
if string in str2val: | |
return str2val[string] | |
else: | |
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") | |
def optional_int(string): | |
return None if string == "None" else int(string) | |
def optional_float(string): | |
return None if string == "None" else float(string) | |
def compression_ratio(text) -> float: | |
text_bytes = text.encode("utf-8") | |
return len(text_bytes) / len(zlib.compress(text_bytes)) | |
def format_timestamp( | |
seconds: float, always_include_hours: bool = False, decimal_marker: str = "." | |
): | |
assert seconds >= 0, "non-negative timestamp expected" | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return ( | |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
) | |
def write_txt(transcript: Iterator[dict], file: TextIO): | |
for segment in transcript: | |
print(segment["text"].strip(), file=file, flush=True) | |
def write_vtt(transcript: Iterator[dict], file: TextIO): | |
print("WEBVTT\n", file=file) | |
for segment in transcript: | |
print( | |
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" | |
f"{segment['text'].strip().replace('-->', '->')}\n", | |
file=file, | |
flush=True, | |
) | |
def write_srt(transcript: Iterator[dict], file: TextIO): | |
""" | |
Write a transcript to a file in SRT format. | |
Example usage: | |
from pathlib import Path | |
from whisper.utils import write_srt | |
result = transcribe(model, audio_path, temperature=temperature, **args) | |
# save SRT | |
audio_basename = Path(audio_path).stem | |
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: | |
write_srt(result["segments"], file=srt) | |
""" | |
for i, segment in enumerate(transcript, start=1): | |
# write srt lines | |
print( | |
f"{i}\n" | |
f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> " | |
f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n" | |
f"{segment['text'].strip().replace('-->', '->')}\n", | |
file=file, | |
flush=True, | |
) | |