Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import shutil | |
import torch | |
import time | |
from pathlib import Path | |
import torch | |
from tqdm import tqdm | |
import re | |
import logging | |
import json5 | |
import accelerate | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration | |
from torch.utils.data import ConcatDataset, DataLoader | |
from accelerate import DistributedDataParallelKwargs | |
from schedulers.scheduler import Eden | |
from models.base.base_sampler import build_samplers | |
from models.base.new_trainer import BaseTrainer | |
class TTSTrainer(BaseTrainer): | |
r"""The base trainer for all TTS models. It inherits from BaseTrainer and implements | |
``build_criterion``, ``_build_dataset`` and ``_build_singer_lut`` methods. You can inherit from this | |
class, and implement ``_build_model``, ``_forward_step``. | |
""" | |
def __init__(self, args=None, cfg=None): | |
self.args = args | |
self.cfg = cfg | |
cfg.exp_name = args.exp_name | |
# init with accelerate | |
self._init_accelerator() | |
self.accelerator.wait_for_everyone() | |
with self.accelerator.main_process_first(): | |
self.logger = get_logger(args.exp_name, log_level="INFO") | |
# Log some info | |
self.logger.info("=" * 56) | |
self.logger.info("||\t\t" + "New training process started." + "\t\t||") | |
self.logger.info("=" * 56) | |
self.logger.info("\n") | |
self.logger.debug(f"Using {args.log_level.upper()} logging level.") | |
self.logger.info(f"Experiment name: {args.exp_name}") | |
self.logger.info(f"Experiment directory: {self.exp_dir}") | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# init counts | |
self.batch_count: int = 0 | |
self.step: int = 0 | |
self.epoch: int = 0 | |
self.max_epoch = ( | |
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") | |
) | |
self.logger.info( | |
"Max epoch: {}".format( | |
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" | |
) | |
) | |
# Check values | |
if self.accelerator.is_main_process: | |
self.__check_basic_configs() | |
# Set runtime configs | |
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride | |
self.checkpoints_path = [ | |
[] for _ in range(len(self.save_checkpoint_stride)) | |
] | |
self.keep_last = [ | |
i if i > 0 else float("inf") for i in self.cfg.train.keep_last | |
] | |
self.run_eval = self.cfg.train.run_eval | |
# set random seed | |
with self.accelerator.main_process_first(): | |
start = time.monotonic_ns() | |
self._set_random_seed(self.cfg.train.random_seed) | |
end = time.monotonic_ns() | |
self.logger.debug( | |
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") | |
# setup data_loader | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building dataset...") | |
start = time.monotonic_ns() | |
self.train_dataloader, self.valid_dataloader = self._build_dataloader() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") | |
# save phone table to exp dir. Should be done before building model due to loading phone table in model | |
if cfg.preprocess.use_phone and cfg.preprocess.phone_extractor != 'lexicon': | |
self._save_phone_symbols_file_to_exp_path() | |
# setup model | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building model...") | |
start = time.monotonic_ns() | |
self.model = self._build_model() | |
end = time.monotonic_ns() | |
self.logger.debug(self.model) | |
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") | |
self.logger.info( | |
f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M" | |
) | |
# optimizer & scheduler | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building optimizer and scheduler...") | |
start = time.monotonic_ns() | |
self.optimizer = self._build_optimizer() | |
self.scheduler = self._build_scheduler() | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" | |
) | |
# create criterion | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building criterion...") | |
start = time.monotonic_ns() | |
self.criterion = self._build_criterion() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") | |
# Resume or Finetune | |
with self.accelerator.main_process_first(): | |
self._check_resume() | |
# accelerate prepare | |
self.logger.info("Initializing accelerate...") | |
start = time.monotonic_ns() | |
self._accelerator_prepare() | |
end = time.monotonic_ns() | |
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") | |
# save config file path | |
self.config_save_path = os.path.join(self.exp_dir, "args.json") | |
self.device = self.accelerator.device | |
if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training: | |
self.speakers = self._build_speaker_lut() | |
self.utt2spk_dict = self._build_utt2spk_dict() | |
# Only for TTS tasks | |
self.task_type = "TTS" | |
self.logger.info("Task type: {}".format(self.task_type)) | |
def _check_resume(self): | |
# if args.resume: | |
if self.args.resume or (self.cfg.model_type == 'VALLE' and self.args.train_stage == 2): | |
if (self.cfg.model_type == 'VALLE' and self.args.train_stage == 2): | |
self.args.resume_type = 'finetune' | |
self.logger.info("Resuming from checkpoint...") | |
start = time.monotonic_ns() | |
self.ckpt_path = self._load_model(self.checkpoint_dir, self.args.checkpoint_path, self.args.resume_type) | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.checkpoints_path = json.load( | |
open(os.path.join(self.ckpt_path, "ckpts.json"), "r") | |
) | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
def _init_accelerator(self): | |
self.exp_dir = os.path.join( | |
os.path.abspath(self.cfg.log_dir), self.args.exp_name | |
) | |
project_config = ProjectConfiguration( | |
project_dir=self.exp_dir, | |
logging_dir=os.path.join(self.exp_dir, "log"), | |
) | |
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
self.accelerator = accelerate.Accelerator( | |
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step, | |
log_with=self.cfg.train.tracker, | |
project_config=project_config, | |
kwargs_handlers=[kwargs] | |
) | |
if self.accelerator.is_main_process: | |
os.makedirs(project_config.project_dir, exist_ok=True) | |
os.makedirs(project_config.logging_dir, exist_ok=True) | |
with self.accelerator.main_process_first(): | |
self.accelerator.init_trackers(self.args.exp_name) | |
def _accelerator_prepare(self): | |
( | |
self.train_dataloader, | |
self.valid_dataloader, | |
) = self.accelerator.prepare( | |
self.train_dataloader, | |
self.valid_dataloader, | |
) | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key] = self.accelerator.prepare(self.model[key]) | |
else: | |
self.model = self.accelerator.prepare(self.model) | |
if isinstance(self.optimizer, dict): | |
for key in self.optimizer.keys(): | |
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key]) | |
else: | |
self.optimizer = self.accelerator.prepare(self.optimizer) | |
if isinstance(self.scheduler, dict): | |
for key in self.scheduler.keys(): | |
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key]) | |
else: | |
self.scheduler = self.accelerator.prepare(self.scheduler) | |
### Following are methods only for TTS tasks ### | |
def _build_dataset(self): | |
pass | |
def _build_criterion(self): | |
pass | |
def _build_model(self): | |
pass | |
def _build_dataloader(self): | |
"""Build dataloader which merges a series of datasets.""" | |
# Build dataset instance for each dataset and combine them by ConcatDataset | |
Dataset, Collator = self._build_dataset() | |
# Build train set | |
datasets_list = [] | |
for dataset in self.cfg.dataset: | |
subdataset = Dataset(self.cfg, dataset, is_valid=False) | |
datasets_list.append(subdataset) | |
train_dataset = ConcatDataset(datasets_list) | |
train_collate = Collator(self.cfg) | |
_, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train") | |
train_loader = DataLoader( | |
train_dataset, | |
collate_fn=train_collate, | |
batch_sampler=batch_sampler, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
# Build test set | |
datasets_list = [] | |
for dataset in self.cfg.dataset: | |
subdataset = Dataset(self.cfg, dataset, is_valid=True) | |
datasets_list.append(subdataset) | |
valid_dataset = ConcatDataset(datasets_list) | |
valid_collate = Collator(self.cfg) | |
_, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid") | |
valid_loader = DataLoader( | |
valid_dataset, | |
collate_fn=valid_collate, | |
batch_sampler=batch_sampler, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
return train_loader, valid_loader | |
def _build_optimizer(self): | |
pass | |
def _build_scheduler(self): | |
pass | |
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"): | |
"""Load model from checkpoint. If a folder is given, it will | |
load the latest checkpoint in checkpoint_dir. If a path is given | |
it will load the checkpoint specified by checkpoint_path. | |
**Only use this method after** ``accelerator.prepare()``. | |
""" | |
if checkpoint_path is None: | |
ls = [str(i) for i in Path(checkpoint_dir).glob("*")] | |
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True) | |
checkpoint_path = ls[0] | |
self.logger.info("Load model from {}".format(checkpoint_path)) | |
print("Load model from {}".format(checkpoint_path)) | |
if resume_type == "resume": | |
self.accelerator.load_state(checkpoint_path) | |
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1 | |
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1 | |
elif resume_type == "finetune": | |
self.model.load_state_dict( | |
torch.load( | |
os.path.join(checkpoint_path, | |
"pytorch_model.bin" | |
) | |
) | |
) | |
self.model.cuda(self.accelerator.device) | |
self.logger.info("Load model weights for finetune SUCCESS!") | |
else: | |
raise ValueError("Unsupported resume type: {}".format(resume_type)) | |
return checkpoint_path | |
### THIS IS MAIN ENTRY ### | |
def train_loop(self): | |
r"""Training loop. The public entry of training process.""" | |
# Wait everyone to prepare before we move on | |
self.accelerator.wait_for_everyone() | |
# dump config file | |
if self.accelerator.is_main_process: | |
self.__dump_cfg(self.config_save_path) | |
# self.optimizer.zero_grad() | |
# Wait to ensure good to go | |
self.accelerator.wait_for_everyone() | |
while self.epoch < self.max_epoch: | |
self.logger.info("\n") | |
self.logger.info("-" * 32) | |
self.logger.info("Epoch {}: ".format(self.epoch)) | |
# Do training & validating epoch | |
train_total_loss, train_losses = self._train_epoch() | |
if isinstance(train_losses, dict): | |
for key, loss in train_losses.items(): | |
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
valid_total_loss, valid_losses = self._valid_epoch() | |
if isinstance(valid_losses, dict): | |
for key, loss in valid_losses.items(): | |
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss)) | |
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss)) | |
self.accelerator.log( | |
{ | |
"Epoch/Train Loss": train_total_loss, | |
"Epoch/Valid Loss": valid_total_loss, | |
}, | |
step=self.epoch, | |
) | |
self.accelerator.wait_for_everyone() | |
# Check if hit save_checkpoint_stride and run_eval | |
run_eval = False | |
if self.accelerator.is_main_process: | |
save_checkpoint = False | |
hit_dix = [] | |
for i, num in enumerate(self.save_checkpoint_stride): | |
if self.epoch % num == 0: | |
save_checkpoint = True | |
hit_dix.append(i) | |
run_eval |= self.run_eval[i] | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process and save_checkpoint: | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, train_total_loss | |
), | |
) | |
self.accelerator.save_state(path) | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(path, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
# Remove old checkpoints | |
to_remove = [] | |
for idx in hit_dix: | |
self.checkpoints_path[idx].append(path) | |
while len(self.checkpoints_path[idx]) > self.keep_last[idx]: | |
to_remove.append((idx, self.checkpoints_path[idx].pop(0))) | |
# Search conflicts | |
total = set() | |
for i in self.checkpoints_path: | |
total |= set(i) | |
do_remove = set() | |
for idx, path in to_remove[::-1]: | |
if path in total: | |
self.checkpoints_path[idx].insert(0, path) | |
else: | |
do_remove.add(path) | |
# Remove old checkpoints | |
for path in do_remove: | |
shutil.rmtree(path, ignore_errors=True) | |
self.logger.debug(f"Remove old checkpoint: {path}") | |
self.accelerator.wait_for_everyone() | |
if run_eval: | |
# TODO: run evaluation | |
pass | |
# Update info for each epoch | |
self.epoch += 1 | |
# Finish training and save final checkpoint | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process: | |
path = os.path.join(self.checkpoint_dir, | |
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_total_loss | |
)) | |
self.accelerator.save_state( | |
os.path.join( | |
self.checkpoint_dir, | |
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_total_loss | |
), | |
) | |
) | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(path, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
self.accelerator.end_training() | |
### Following are methods that can be used directly in child classes ### | |
def _train_epoch(self): | |
r"""Training epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key].train() | |
else: | |
self.model.train() | |
epoch_sum_loss: float = 0.0 | |
epoch_losses: dict = {} | |
epoch_step: int = 0 | |
for batch in tqdm( | |
self.train_dataloader, | |
desc=f"Training Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
# Do training step and BP | |
with self.accelerator.accumulate(self.model): | |
total_loss, train_losses, _ = self._train_step(batch) | |
self.batch_count += 1 | |
# Update info for each step | |
# TODO: step means BP counts or batch counts? | |
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
if isinstance(self.scheduler, dict): | |
for key in self.scheduler.keys(): | |
self.scheduler[key].step() | |
else: | |
if isinstance(self.scheduler, Eden): | |
self.scheduler.step_batch(self.step) | |
else: | |
self.scheduler.step() | |
epoch_sum_loss += total_loss | |
if isinstance(train_losses, dict): | |
for key, value in train_losses.items(): | |
epoch_losses[key] += value | |
if isinstance(train_losses, dict): | |
for key, loss in train_losses.items(): | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.step, | |
) | |
self.step += 1 | |
epoch_step += 1 | |
self.accelerator.wait_for_everyone() | |
epoch_sum_loss = ( | |
epoch_sum_loss | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
for key in epoch_losses.keys(): | |
epoch_losses[key] = ( | |
epoch_losses[key] | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
return epoch_sum_loss, epoch_losses | |
def _valid_epoch(self): | |
r"""Testing epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key].eval() | |
else: | |
self.model.eval() | |
epoch_sum_loss = 0.0 | |
epoch_losses = dict() | |
for batch in tqdm( | |
self.valid_dataloader, | |
desc=f"Validating Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
total_loss, valid_losses, valid_stats = self._valid_step(batch) | |
epoch_sum_loss += total_loss | |
if isinstance(valid_losses, dict): | |
for key, value in valid_losses.items(): | |
if key not in epoch_losses.keys(): | |
epoch_losses[key] = value | |
else: | |
epoch_losses[key] += value | |
epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader) | |
for key in epoch_losses.keys(): | |
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader) | |
self.accelerator.wait_for_everyone() | |
return epoch_sum_loss, epoch_losses | |
def _train_step(self): | |
pass | |
def _valid_step(self, batch): | |
pass | |
def _inference(self): | |
pass | |
def _is_valid_pattern(self, directory_name): | |
directory_name = str(directory_name) | |
pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}" | |
return re.match(pattern, directory_name) is not None | |
def _check_basic_configs(self): | |
if self.cfg.train.gradient_accumulation_step <= 0: | |
self.logger.fatal("Invalid gradient_accumulation_step value!") | |
self.logger.error( | |
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
) | |
self.accelerator.end_training() | |
raise ValueError( | |
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
) | |
def __dump_cfg(self, path): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
json5.dump( | |
self.cfg, | |
open(path, "w"), | |
indent=4, | |
sort_keys=True, | |
ensure_ascii=False, | |
quote_keys=True, | |
) | |
def __check_basic_configs(self): | |
if self.cfg.train.gradient_accumulation_step <= 0: | |
self.logger.fatal("Invalid gradient_accumulation_step value!") | |
self.logger.error( | |
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
) | |
self.accelerator.end_training() | |
raise ValueError( | |
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
) | |
# TODO: check other values | |
def __count_parameters(model): | |
model_param = 0.0 | |
if isinstance(model, dict): | |
for key, value in model.items(): | |
model_param += sum(p.numel() for p in model[key].parameters()) | |
else: | |
model_param = sum(p.numel() for p in model.parameters()) | |
return model_param | |
def _build_speaker_lut(self): | |
# combine speakers | |
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)): | |
speakers = {} | |
else: | |
with open( | |
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "r" | |
) as speaker_file: | |
speakers = json.load(speaker_file) | |
for dataset in self.cfg.dataset: | |
speaker_lut_path = os.path.join( | |
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id | |
) | |
with open(speaker_lut_path, "r") as speaker_lut_path: | |
singer_lut = json.load(speaker_lut_path) | |
for singer in singer_lut.keys(): | |
if singer not in speakers: | |
speakers[singer] = len(speakers) | |
with open( | |
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "w" | |
) as speaker_file: | |
json.dump(speakers, speaker_file, indent=4, ensure_ascii=False) | |
print( | |
"speakers have been dumped to {}".format( | |
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id) | |
) | |
) | |
return speakers | |
def _build_utt2spk_dict(self): | |
# combine speakers | |
utt2spk = {} | |
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)): | |
utt2spk = {} | |
else: | |
with open( | |
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "r" | |
) as utt2spk_file: | |
for line in utt2spk_file.readlines(): | |
utt, spk = line.strip().split('\t') | |
utt2spk[utt] = spk | |
for dataset in self.cfg.dataset: | |
utt2spk_dict_path = os.path.join( | |
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.utt2spk | |
) | |
with open(utt2spk_dict_path, "r") as utt2spk_dict: | |
for line in utt2spk_dict.readlines(): | |
utt, spk = line.strip().split('\t') | |
if utt not in utt2spk.keys(): | |
utt2spk[utt] = spk | |
with open( | |
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "w" | |
) as utt2spk_file: | |
for utt, spk in utt2spk.items(): | |
utt2spk_file.write(utt+'\t'+spk+'\n') | |
print( | |
"utterance and speaker mapper have been dumped to {}".format( | |
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk) | |
) | |
) | |
return utt2spk | |
def _save_phone_symbols_file_to_exp_path(self): | |
phone_symbols_file = os.path.join(self.cfg.preprocess.processed_dir, | |
self.cfg.dataset[0], | |
self.cfg.preprocess.symbols_dict) | |
phone_symbols_file_to_exp_path = os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict) | |
shutil.copy(phone_symbols_file, phone_symbols_file_to_exp_path) | |
print( | |
"phone symbols been dumped to {}".format( | |
os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict) | |
) | |
) |