Text-to-Speech / models /tts /base /tts_trainer.py
zyingt's picture
Upload 685 files
0d80816
raw
history blame
27.4 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import shutil
import torch
import time
from pathlib import Path
import torch
from tqdm import tqdm
import re
import logging
import json5
import accelerate
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from torch.utils.data import ConcatDataset, DataLoader
from accelerate import DistributedDataParallelKwargs
from schedulers.scheduler import Eden
from models.base.base_sampler import build_samplers
from models.base.new_trainer import BaseTrainer
class TTSTrainer(BaseTrainer):
r"""The base trainer for all TTS models. It inherits from BaseTrainer and implements
``build_criterion``, ``_build_dataset`` and ``_build_singer_lut`` methods. You can inherit from this
class, and implement ``_build_model``, ``_forward_step``.
"""
def __init__(self, args=None, cfg=None):
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
# init with accelerate
self._init_accelerator()
self.accelerator.wait_for_everyone()
with self.accelerator.main_process_first():
self.logger = get_logger(args.exp_name, log_level="INFO")
# Log some info
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# init counts
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check values
if self.accelerator.is_main_process:
self.__check_basic_configs()
# Set runtime configs
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.keep_last = [
i if i > 0 else float("inf") for i in self.cfg.train.keep_last
]
self.run_eval = self.cfg.train.run_eval
# set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# setup data_loader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# save phone table to exp dir. Should be done before building model due to loading phone table in model
if cfg.preprocess.use_phone and cfg.preprocess.phone_extractor != 'lexicon':
self._save_phone_symbols_file_to_exp_path()
# setup model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
self.logger.debug(self.model)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(
f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M"
)
# optimizer & scheduler
with self.accelerator.main_process_first():
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
self.optimizer = self._build_optimizer()
self.scheduler = self._build_scheduler()
end = time.monotonic_ns()
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# create criterion
with self.accelerator.main_process_first():
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterion = self._build_criterion()
end = time.monotonic_ns()
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
# Resume or Finetune
with self.accelerator.main_process_first():
self._check_resume()
# accelerate prepare
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
self._accelerator_prepare()
end = time.monotonic_ns()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
# save config file path
self.config_save_path = os.path.join(self.exp_dir, "args.json")
self.device = self.accelerator.device
if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training:
self.speakers = self._build_speaker_lut()
self.utt2spk_dict = self._build_utt2spk_dict()
# Only for TTS tasks
self.task_type = "TTS"
self.logger.info("Task type: {}".format(self.task_type))
def _check_resume(self):
# if args.resume:
if self.args.resume or (self.cfg.model_type == 'VALLE' and self.args.train_stage == 2):
if (self.cfg.model_type == 'VALLE' and self.args.train_stage == 2):
self.args.resume_type = 'finetune'
self.logger.info("Resuming from checkpoint...")
start = time.monotonic_ns()
self.ckpt_path = self._load_model(self.checkpoint_dir, self.args.checkpoint_path, self.args.resume_type)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
self.checkpoints_path = json.load(
open(os.path.join(self.ckpt_path, "ckpts.json"), "r")
)
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
def _init_accelerator(self):
self.exp_dir = os.path.join(
os.path.abspath(self.cfg.log_dir), self.args.exp_name
)
project_config = ProjectConfiguration(
project_dir=self.exp_dir,
logging_dir=os.path.join(self.exp_dir, "log"),
)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
self.accelerator = accelerate.Accelerator(
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
log_with=self.cfg.train.tracker,
project_config=project_config,
kwargs_handlers=[kwargs]
)
if self.accelerator.is_main_process:
os.makedirs(project_config.project_dir, exist_ok=True)
os.makedirs(project_config.logging_dir, exist_ok=True)
with self.accelerator.main_process_first():
self.accelerator.init_trackers(self.args.exp_name)
def _accelerator_prepare(self):
(
self.train_dataloader,
self.valid_dataloader,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
)
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key] = self.accelerator.prepare(self.model[key])
else:
self.model = self.accelerator.prepare(self.model)
if isinstance(self.optimizer, dict):
for key in self.optimizer.keys():
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key])
else:
self.optimizer = self.accelerator.prepare(self.optimizer)
if isinstance(self.scheduler, dict):
for key in self.scheduler.keys():
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key])
else:
self.scheduler = self.accelerator.prepare(self.scheduler)
### Following are methods only for TTS tasks ###
def _build_dataset(self):
pass
def _build_criterion(self):
pass
def _build_model(self):
pass
def _build_dataloader(self):
"""Build dataloader which merges a series of datasets."""
# Build dataset instance for each dataset and combine them by ConcatDataset
Dataset, Collator = self._build_dataset()
# Build train set
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = ConcatDataset(datasets_list)
train_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train")
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
# Build test set
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = ConcatDataset(datasets_list)
valid_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid")
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
return train_loader, valid_loader
def _build_optimizer(self):
pass
def _build_scheduler(self):
pass
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
"""Load model from checkpoint. If a folder is given, it will
load the latest checkpoint in checkpoint_dir. If a path is given
it will load the checkpoint specified by checkpoint_path.
**Only use this method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
self.logger.info("Load model from {}".format(checkpoint_path))
print("Load model from {}".format(checkpoint_path))
if resume_type == "resume":
self.accelerator.load_state(checkpoint_path)
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
elif resume_type == "finetune":
self.model.load_state_dict(
torch.load(
os.path.join(checkpoint_path,
"pytorch_model.bin"
)
)
)
self.model.cuda(self.accelerator.device)
self.logger.info("Load model weights for finetune SUCCESS!")
else:
raise ValueError("Unsupported resume type: {}".format(resume_type))
return checkpoint_path
### THIS IS MAIN ENTRY ###
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self.__dump_cfg(self.config_save_path)
# self.optimizer.zero_grad()
# Wait to ensure good to go
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Do training & validating epoch
train_total_loss, train_losses = self._train_epoch()
if isinstance(train_losses, dict):
for key, loss in train_losses.items():
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
valid_total_loss, valid_losses = self._valid_epoch()
if isinstance(valid_losses, dict):
for key, loss in valid_losses.items():
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss))
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss))
self.accelerator.log(
{
"Epoch/Train Loss": train_total_loss,
"Epoch/Valid Loss": valid_total_loss,
},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
# Check if hit save_checkpoint_stride and run_eval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
hit_dix = []
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
hit_dix.append(i)
run_eval |= self.run_eval[i]
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, train_total_loss
),
)
self.accelerator.save_state(path)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
# Remove old checkpoints
to_remove = []
for idx in hit_dix:
self.checkpoints_path[idx].append(path)
while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
to_remove.append((idx, self.checkpoints_path[idx].pop(0)))
# Search conflicts
total = set()
for i in self.checkpoints_path:
total |= set(i)
do_remove = set()
for idx, path in to_remove[::-1]:
if path in total:
self.checkpoints_path[idx].insert(0, path)
else:
do_remove.add(path)
# Remove old checkpoints
for path in do_remove:
shutil.rmtree(path, ignore_errors=True)
self.logger.debug(f"Remove old checkpoint: {path}")
self.accelerator.wait_for_everyone()
if run_eval:
# TODO: run evaluation
pass
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
path = os.path.join(self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
))
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
self.accelerator.end_training()
### Following are methods that can be used directly in child classes ###
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].train()
else:
self.model.train()
epoch_sum_loss: float = 0.0
epoch_losses: dict = {}
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Do training step and BP
with self.accelerator.accumulate(self.model):
total_loss, train_losses, _ = self._train_step(batch)
self.batch_count += 1
# Update info for each step
# TODO: step means BP counts or batch counts?
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
if isinstance(self.scheduler, dict):
for key in self.scheduler.keys():
self.scheduler[key].step()
else:
if isinstance(self.scheduler, Eden):
self.scheduler.step_batch(self.step)
else:
self.scheduler.step()
epoch_sum_loss += total_loss
if isinstance(train_losses, dict):
for key, value in train_losses.items():
epoch_losses[key] += value
if isinstance(train_losses, dict):
for key, loss in train_losses.items():
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
epoch_sum_loss = (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_sum_loss, epoch_losses
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].eval()
else:
self.model.eval()
epoch_sum_loss = 0.0
epoch_losses = dict()
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
total_loss, valid_losses, valid_stats = self._valid_step(batch)
epoch_sum_loss += total_loss
if isinstance(valid_losses, dict):
for key, value in valid_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader)
for key in epoch_losses.keys():
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)
self.accelerator.wait_for_everyone()
return epoch_sum_loss, epoch_losses
def _train_step(self):
pass
def _valid_step(self, batch):
pass
def _inference(self):
pass
def _is_valid_pattern(self, directory_name):
directory_name = str(directory_name)
pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}"
return re.match(pattern, directory_name) is not None
def _check_basic_configs(self):
if self.cfg.train.gradient_accumulation_step <= 0:
self.logger.fatal("Invalid gradient_accumulation_step value!")
self.logger.error(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
self.accelerator.end_training()
raise ValueError(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
def __dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
def __check_basic_configs(self):
if self.cfg.train.gradient_accumulation_step <= 0:
self.logger.fatal("Invalid gradient_accumulation_step value!")
self.logger.error(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
self.accelerator.end_training()
raise ValueError(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
# TODO: check other values
@staticmethod
def __count_parameters(model):
model_param = 0.0
if isinstance(model, dict):
for key, value in model.items():
model_param += sum(p.numel() for p in model[key].parameters())
else:
model_param = sum(p.numel() for p in model.parameters())
return model_param
def _build_speaker_lut(self):
# combine speakers
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)):
speakers = {}
else:
with open(
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "r"
) as speaker_file:
speakers = json.load(speaker_file)
for dataset in self.cfg.dataset:
speaker_lut_path = os.path.join(
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id
)
with open(speaker_lut_path, "r") as speaker_lut_path:
singer_lut = json.load(speaker_lut_path)
for singer in singer_lut.keys():
if singer not in speakers:
speakers[singer] = len(speakers)
with open(
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "w"
) as speaker_file:
json.dump(speakers, speaker_file, indent=4, ensure_ascii=False)
print(
"speakers have been dumped to {}".format(
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)
)
)
return speakers
def _build_utt2spk_dict(self):
# combine speakers
utt2spk = {}
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)):
utt2spk = {}
else:
with open(
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "r"
) as utt2spk_file:
for line in utt2spk_file.readlines():
utt, spk = line.strip().split('\t')
utt2spk[utt] = spk
for dataset in self.cfg.dataset:
utt2spk_dict_path = os.path.join(
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.utt2spk
)
with open(utt2spk_dict_path, "r") as utt2spk_dict:
for line in utt2spk_dict.readlines():
utt, spk = line.strip().split('\t')
if utt not in utt2spk.keys():
utt2spk[utt] = spk
with open(
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "w"
) as utt2spk_file:
for utt, spk in utt2spk.items():
utt2spk_file.write(utt+'\t'+spk+'\n')
print(
"utterance and speaker mapper have been dumped to {}".format(
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)
)
)
return utt2spk
def _save_phone_symbols_file_to_exp_path(self):
phone_symbols_file = os.path.join(self.cfg.preprocess.processed_dir,
self.cfg.dataset[0],
self.cfg.preprocess.symbols_dict)
phone_symbols_file_to_exp_path = os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict)
shutil.copy(phone_symbols_file, phone_symbols_file_to_exp_path)
print(
"phone symbols been dumped to {}".format(
os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict)
)
)