Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
def log_dur_loss(dur_pred_log, dur_target, mask, loss_type="l1"): | |
# dur_pred_log: (B, N) | |
# dur_target: (B, N) | |
# mask: (B, N) mask is 0 | |
dur_target_log = torch.log(1 + dur_target) | |
if loss_type == "l1": | |
loss = F.l1_loss( | |
dur_pred_log, dur_target_log, reduction="none" | |
).float() * mask.to(dur_target.dtype) | |
elif loss_type == "l2": | |
loss = F.mse_loss( | |
dur_pred_log, dur_target_log, reduction="none" | |
).float() * mask.to(dur_target.dtype) | |
else: | |
raise NotImplementedError() | |
loss = loss.sum() / (mask.to(dur_target.dtype).sum()) | |
return loss | |
def log_pitch_loss(pitch_pred_log, pitch_target, mask, loss_type="l1"): | |
pitch_target_log = torch.log(pitch_target) | |
if loss_type == "l1": | |
loss = F.l1_loss( | |
pitch_pred_log, pitch_target_log, reduction="none" | |
).float() * mask.to(pitch_target.dtype) | |
elif loss_type == "l2": | |
loss = F.mse_loss( | |
pitch_pred_log, pitch_target_log, reduction="none" | |
).float() * mask.to(pitch_target.dtype) | |
else: | |
raise NotImplementedError() | |
loss = loss.sum() / (mask.to(pitch_target.dtype).sum() + 1e-8) | |
return loss | |
def diff_loss(pred, target, mask, loss_type="l1"): | |
# pred: (B, d, T) | |
# target: (B, d, T) | |
# mask: (B, T) | |
if loss_type == "l1": | |
loss = F.l1_loss(pred, target, reduction="none").float() * ( | |
mask.to(pred.dtype).unsqueeze(1) | |
) | |
elif loss_type == "l2": | |
loss = F.mse_loss(pred, target, reduction="none").float() * ( | |
mask.to(pred.dtype).unsqueeze(1) | |
) | |
else: | |
raise NotImplementedError() | |
loss = (torch.mean(loss, dim=1)).sum() / (mask.to(pred.dtype).sum()) | |
return loss | |
def diff_ce_loss(pred_dist, gt_indices, mask): | |
# pred_dist: (nq, B, T, 1024) | |
# gt_indices: (nq, B, T) | |
pred_dist = pred_dist.permute(1, 3, 0, 2) # (B, 1024, nq, T) | |
gt_indices = gt_indices.permute(1, 0, 2).long() # (B, nq, T) | |
loss = F.cross_entropy( | |
pred_dist, gt_indices, reduction="none" | |
).float() # (B, nq, T) | |
loss = loss * mask.to(loss.dtype).unsqueeze(1) | |
loss = (torch.mean(loss, dim=1)).sum() / (mask.to(loss.dtype).sum()) | |
return loss | |