PicoAudio / pico_model.py
ZeyuXie's picture
Upload pico_model.py
c7e8855 verified
raw
history blame
15.4 kB
import random
import numpy as np
from tqdm import tqdm
from einops import repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
def build_pretrained_models(name):
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
def _init_layer(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.)
class ClapText_Onset_2_Audio_Diffusion(nn.Module):
def __init__(
self,
scheduler_name,
unet_model_config_path=None,
snr_gamma=None,
uncondition=False,
):
super().__init__()
assert unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.scheduler_name = scheduler_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.uncondition = uncondition
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_channel(self, input):
# input [batch, 32, 256] -> [batch, 2, 256, 16]
return input.reshape(input.shape[0], 2, 16, 256).transpose(2, 3)
def encode_text(self, input_dict):
device = self.device
encoder_hidden_states = input_dict["event_info"].repeat_interleave(2, -1).unsqueeze(1)
boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, input_dict, validation_mode=False):
device = self.device
latents = input_dict["latent"]
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
# [batch, 1, 1024], [batch, 1]
encoder_hidden_states, boolean_encoder_mask = self.encode_text(input_dict)
if self.uncondition:
mask_indices = [k for k in range(len(latents)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
onset_emb = self.encode_channel(input_dict["onset"])
# [batch, channel:8, 256, 16] + [batch, onset:2, 256, 16]
onset_noisy_latents = torch.cat((onset_emb, noisy_latents), dim=1)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
model_pred = self.unet(
onset_noisy_latents, timesteps, encoder_hidden_states,
#encoder_attention_mask=boolean_encoder_mask
).sample
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, input_dict, num_samples_per_prompt):
device = self.device
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
negative_prompt_embeds = torch.zeros(prompt_embeds.shape).to(device)
uncond_attention_mask = (torch.ones(attention_mask.shape) == 1).to(device)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
@torch.no_grad()
def inference(self, input_dict, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
prompt = input_dict["onset"]
device = self.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(input_dict, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.config.in_channels - 2
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
onset_emb = self.encode_channel(input_dict["onset"]).repeat_interleave(num_samples_per_prompt, 0)
onset_latents = torch.cat((onset_emb, latents), dim=1)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in tqdm(enumerate(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([onset_latents] * 2) if classifier_free_guidance else onset_latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
onset_latents = torch.cat((onset_emb, latents), dim=1)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
return latents
##############################
### Demo utils
##############################
from sklearn.metrics.pairwise import cosine_similarity
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
class PicoDiffusion(ClapText_Onset_2_Audio_Diffusion):
def __init__(self,
scheduler_name,
unet_model_config_path=None,
snr_gamma=None,
uncondition=False,
freeze_text_encoder_ckpt=None,
diffusion_pt=None,
):
super().__init__(scheduler_name, unet_model_config_path, snr_gamma, uncondition)
self.freeze_text_encoder = laion_clap.CLAP_Module(enable_fusion=False)
#load pretrain params
ckpt = clap_load_state_dict(freeze_text_encoder_ckpt, skip_params=True)
del_parameter_key = ["text_branch.embeddings.position_ids"]
ckpt = {f"freeze_text_encoder.model.{k}":v for k, v in ckpt.items() if k not in del_parameter_key}
diffusion_ckpt = torch.load(diffusion_pt)
del diffusion_ckpt["class_emb.weight"]
ckpt.update(diffusion_ckpt)
self.load_state_dict(ckpt)
self.event_list = [
"burping_belching", # 0
"car_horn_honking", #
"cat_meowing", #
"cow_mooing", #
"dog_barking", #
"door_knocking", #
"door_slamming", #
"explosion", #
"gunshot", # 8
"sheep_goat_bleating", #
"sneeze", #
"spraying", #
"thump_thud", #
"train_horn", #
"tapping_clicking_clanking", #
"woman_laughing", #
"duck_quacking", # 16
"whistling", #
]
self.events_emb = self.freeze_text_encoder.get_text_embedding(self.event_list, use_tensor=False)
@torch.no_grad()
def demo_inference(self, timestampCaption, scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True):
#"timestampCaption": "event1__onset1-offset1_onset2-offset2--event2__onset1-offset1"
#"timestampCaption": "event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1."
device = self.device
timestamp_matrix = np.zeros((32, 256))
events = []
timestampCaption = timestampCaption.rstrip('.')
for event_timestamp in timestampCaption.split(' and '):
# event_timestamp : event1__onset1-offset1_onset2-offset2
(event, instance) = event_timestamp.split(' at ')
events.append(event)
# instance : onset1-offset1_onset2-offset2
event_emb = self.freeze_text_encoder.get_text_embedding([event, ""], use_tensor=False)[0]
event_id = np.argmax(cosine_similarity(event_emb.reshape(1, -1), self.events_emb))
for start_end in instance.split('_'):
(start, end) = start_end.split('-')
start, end = int(float(start)*250/10), int(float(end)*250/10)
if end > 250: break
timestamp_matrix[event_id, start: end] = 1
#event_info = self.clap_scorer.get_text_embedding([" and ".join(events), ""], use_tensor=False)[0]
event_info = self.freeze_text_encoder.get_text_embedding([" and ".join(events), ""], use_tensor=True)[0].unsqueeze(0)
timestamp_matrix = torch.tensor(timestamp_matrix, dtype=torch.float32).unsqueeze(0).to(device)
latents = self.inference({"onset":timestamp_matrix, "event_info":event_info.to(device)}, scheduler, num_steps, guidance_scale, num_samples_per_prompt, disable_progress)
return latents