Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
class PromptPreparer: | |
def prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes): | |
if self.prefix_mode == 0: | |
y_emb, prefix_len = self._handle_prefix_mode_0(y, codes, nar_stage) | |
elif self.prefix_mode == 1: | |
y_emb, prefix_len = self._handle_prefix_mode_1(y, y_lens, codes, nar_stage) | |
elif self.prefix_mode in [2, 4]: | |
y_emb, prefix_len = self._handle_prefix_mode_2_4( | |
y, y_lens, codes, nar_stage, y_prompts_codes | |
) | |
else: | |
raise ValueError("Invalid prefix mode") | |
return y_emb, prefix_len | |
def _handle_prefix_mode_0(self, y, codes, nar_stage): | |
prefix_len = 0 | |
y_emb = self.nar_audio_embeddings[0](y) | |
for j in range(1, nar_stage): | |
y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j]) | |
return y_emb, 0 | |
def _handle_prefix_mode_1(self, y, y_lens, codes, nar_stage): | |
int_low = (0.25 * y_lens.min()).type(torch.int64).item() | |
prefix_len = torch.randint(int_low, int_low * 2, size=()).item() | |
prefix_len = min(prefix_len, 225) | |
y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len]) | |
y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:]) | |
for j in range(1, self.num_quantizers): | |
y_prompts += self.nar_audio_embeddings[j](codes[:, :prefix_len, j]) | |
if j < nar_stage: | |
y_emb += self.nar_audio_embeddings[j](codes[:, prefix_len:, j]) | |
y_emb = torch.concat([y_prompts, y_emb], axis=1) | |
return y_emb, prefix_len | |
def _handle_prefix_mode_2_4(self, y, y_lens, codes, nar_stage, y_prompts_codes): | |
if self.prefix_mode == 2: | |
prefix_len = min(225, int(0.25 * y_lens.min().item())) | |
y_prompts_codes = [] | |
for b in range(codes.shape[0]): | |
start = self.rng.randint(0, y_lens[b].item() - prefix_len) | |
y_prompts_codes.append( | |
torch.clone(codes[b, start : start + prefix_len]) | |
) | |
codes[b, start : start + prefix_len, nar_stage] = self.audio_token_num | |
y_prompts_codes = torch.stack(y_prompts_codes, dim=0) | |
else: | |
prefix_len = y_prompts_codes.shape[1] | |
y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0]) | |
y_emb = self.nar_audio_embeddings[0](y) | |
for j in range(1, self.num_quantizers): | |
y_prompts += self.nar_audio_embeddings[j](y_prompts_codes[..., j]) | |
if j < nar_stage: | |
y_emb += self.nar_audio_embeddings[j](codes[..., j]) | |
y_emb = torch.concat([y_prompts, y_emb], axis=1) | |
return y_emb, prefix_len | |