Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is modified from https://github.com/jaywalnut310/vits/blob/main/models.pyimport torch | |
from torch import nn | |
from torch.nn import functional as F | |
import math | |
from modules.flow.modules import * | |
class StochasticDurationPredictor(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout, | |
n_flows=4, | |
gin_channels=0, | |
): | |
super().__init__() | |
filter_channels = in_channels | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.log_flow = Log() | |
self.flows = nn.ModuleList() | |
self.flows.append(ElementwiseAffine(2)) | |
for i in range(n_flows): | |
self.flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | |
self.flows.append(Flip()) | |
self.post_pre = nn.Conv1d(1, filter_channels, 1) | |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.post_convs = DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(ElementwiseAffine(2)) | |
for i in range(4): | |
self.post_flows.append( | |
ConvFlow(2, filter_channels, kernel_size, n_layers=3) | |
) | |
self.post_flows.append(Flip()) | |
self.pre = nn.Conv1d(in_channels, filter_channels, 1) | |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.convs = DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | |
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): | |
x = torch.detach(x) | |
x = self.pre(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert w is not None | |
logdet_tot_q = 0 | |
h_w = self.post_pre(w) | |
h_w = self.post_convs(h_w, x_mask) | |
h_w = self.post_proj(h_w) * x_mask | |
e_q = ( | |
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) | |
* x_mask | |
) | |
z_q = e_q | |
for flow in self.post_flows: | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
logdet_tot_q += logdet_q | |
z_u, z1 = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (w - u) * x_mask | |
logdet_tot_q += torch.sum( | |
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2] | |
) | |
logq = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) | |
- logdet_tot_q | |
) | |
logdet_tot = 0 | |
z0, logdet = self.log_flow(z0, x_mask) | |
logdet_tot += logdet | |
z = torch.cat([z0, z1], 1) | |
for flow in flows: | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
nll = ( | |
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) | |
- logdet_tot | |
) | |
return nll + logq | |
else: | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] | |
z = ( | |
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) | |
* noise_scale | |
) | |
for flow in flows: | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, z1 = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |