Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import librosa | |
import numpy as np | |
import torch | |
import parselmouth | |
import torchcrepe | |
import pyworld as pw | |
def get_bin_index(f0, m, M, n_bins, use_log_scale): | |
""" | |
WARNING: to abandon! | |
Args: | |
raw_f0: tensor whose shpae is (N, frame_len) | |
Returns: | |
index: tensor whose shape is same to f0 | |
""" | |
raw_f0 = f0.clone() | |
raw_m, raw_M = m, M | |
if use_log_scale: | |
f0[torch.where(f0 == 0)] = 1 | |
f0 = torch.log(f0) | |
m, M = float(np.log(m)), float(np.log(M)) | |
# Set normal index in [1, n_bins - 1] | |
width = (M + 1e-7 - m) / (n_bins - 1) | |
index = (f0 - m) // width + 1 | |
# Set unvoiced frames as 0, Therefore, the vocabulary is [0, n_bins- 1], whose size is n_bins | |
index[torch.where(f0 == 0)] = 0 | |
# TODO: Boundary check (special: to judge whether 0 for unvoiced) | |
if torch.any(raw_f0 > raw_M): | |
print("F0 Warning: too high f0: {}".format(raw_f0[torch.where(raw_f0 > raw_M)])) | |
index[torch.where(raw_f0 > raw_M)] = n_bins - 1 | |
if torch.any(raw_f0 < raw_m): | |
print("F0 Warning: too low f0: {}".format(raw_f0[torch.where(f0 < m)])) | |
index[torch.where(f0 < m)] = 0 | |
return torch.as_tensor(index, dtype=torch.long, device=f0.device) | |
def f0_to_coarse(f0, pitch_bin, pitch_min, pitch_max): | |
## TODO: Figure out the detail of this function | |
f0_mel_min = 1127 * np.log(1 + pitch_min / 700) | |
f0_mel_max = 1127 * np.log(1 + pitch_max / 700) | |
is_torch = isinstance(f0, torch.Tensor) | |
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (pitch_bin - 2) / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > pitch_bin - 1] = pitch_bin - 1 | |
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int32) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
f0_coarse.max(), | |
f0_coarse.min(), | |
) | |
return f0_coarse | |
def interpolate(f0): | |
"""Interpolate the unvoiced part. Thus the f0 can be passed to a subtractive synthesizer. | |
Args: | |
f0: A numpy array of shape (seq_len,) | |
Returns: | |
f0: Interpolated f0 of shape (seq_len,) | |
uv: Unvoiced part of shape (seq_len,) | |
""" | |
uv = f0 == 0 | |
if len(f0[~uv]) > 0: | |
# interpolate the unvoiced f0 | |
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) | |
uv = uv.astype("float") | |
uv = np.min(np.array([uv[:-2], uv[1:-1], uv[2:]]), axis=0) | |
uv = np.pad(uv, (1, 1)) | |
return f0, uv | |
def get_log_f0(f0): | |
f0[np.where(f0 == 0)] = 1 | |
log_f0 = np.log(f0) | |
return log_f0 | |
# ========== Methods ========== | |
def get_f0_features_using_pyin(audio, cfg): | |
"""Using pyin to extract the f0 feature. | |
Args: | |
audio | |
fs | |
win_length | |
hop_length | |
f0_min | |
f0_max | |
Returns: | |
f0: numpy array of shape (frame_len,) | |
""" | |
f0, voiced_flag, voiced_probs = librosa.pyin( | |
y=audio, | |
fmin=cfg.f0_min, | |
fmax=cfg.f0_max, | |
sr=cfg.sample_rate, | |
win_length=cfg.win_size, | |
hop_length=cfg.hop_size, | |
) | |
# Set nan to 0 | |
f0[voiced_flag == False] = 0 | |
return f0 | |
def get_f0_features_using_parselmouth(audio, cfg, speed=1): | |
"""Using parselmouth to extract the f0 feature. | |
Args: | |
audio | |
mel_len | |
hop_length | |
fs | |
f0_min | |
f0_max | |
speed(default=1) | |
Returns: | |
f0: numpy array of shape (frame_len,) | |
pitch_coarse: numpy array of shape (frame_len,) | |
""" | |
hop_size = int(np.round(cfg.hop_size * speed)) | |
# Calculate the time step for pitch extraction | |
time_step = hop_size / cfg.sample_rate * 1000 | |
f0 = ( | |
parselmouth.Sound(audio, cfg.sample_rate) | |
.to_pitch_ac( | |
time_step=time_step / 1000, | |
voicing_threshold=0.6, | |
pitch_floor=cfg.f0_min, | |
pitch_ceiling=cfg.f0_max, | |
) | |
.selected_array["frequency"] | |
) | |
# Pad the pitch to the mel_len | |
# pad_size = (int(len(audio) // hop_size) - len(f0) + 1) // 2 | |
# f0 = np.pad(f0, [[pad_size, mel_len - len(f0) - pad_size]], mode="constant") | |
# Get the coarse part | |
pitch_coarse = f0_to_coarse(f0, cfg.pitch_bin, cfg.f0_min, cfg.f0_max) | |
return f0, pitch_coarse | |
def get_f0_features_using_dio(audio, cfg): | |
"""Using dio to extract the f0 feature. | |
Args: | |
audio | |
mel_len | |
fs | |
hop_length | |
f0_min | |
f0_max | |
Returns: | |
f0: numpy array of shape (frame_len,) | |
""" | |
# Get the raw f0 | |
_f0, t = pw.dio( | |
audio.astype("double"), | |
cfg.sample_rate, | |
f0_floor=cfg.f0_min, | |
f0_ceil=cfg.f0_max, | |
channels_in_octave=2, | |
frame_period=(1000 * cfg.hop_size / cfg.sample_rate), | |
) | |
# Get the f0 | |
f0 = pw.stonemask(audio.astype("double"), _f0, t, cfg.sample_rate) | |
return f0 | |
def get_f0_features_using_harvest(audio, mel_len, fs, hop_length, f0_min, f0_max): | |
"""Using harvest to extract the f0 feature. | |
Args: | |
audio | |
mel_len | |
fs | |
hop_length | |
f0_min | |
f0_max | |
Returns: | |
f0: numpy array of shape (frame_len,) | |
""" | |
f0, _ = pw.harvest( | |
audio.astype("double"), | |
fs, | |
f0_floor=f0_min, | |
f0_ceil=f0_max, | |
frame_period=(1000 * hop_length / fs), | |
) | |
f0 = f0.astype("float")[:mel_len] | |
return f0 | |
def get_f0_features_using_crepe( | |
audio, mel_len, fs, hop_length, hop_length_new, f0_min, f0_max, threshold=0.3 | |
): | |
"""Using torchcrepe to extract the f0 feature. | |
Args: | |
audio | |
mel_len | |
fs | |
hop_length | |
hop_length_new | |
f0_min | |
f0_max | |
threshold(default=0.3) | |
Returns: | |
f0: numpy array of shape (frame_len,) | |
""" | |
# Currently, crepe only supports 16khz audio | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
audio_16k = librosa.resample(audio, orig_sr=fs, target_sr=16000) | |
audio_16k_torch = torch.FloatTensor(audio_16k).unsqueeze(0).to(device) | |
# Get the raw pitch | |
f0, pd = torchcrepe.predict( | |
audio_16k_torch, | |
16000, | |
hop_length_new, | |
f0_min, | |
f0_max, | |
pad=True, | |
model="full", | |
batch_size=1024, | |
device=device, | |
return_periodicity=True, | |
) | |
# Filter, de-silence, set up threshold for unvoiced part | |
pd = torchcrepe.filter.median(pd, 3) | |
pd = torchcrepe.threshold.Silence(-60.0)(pd, audio_16k_torch, 16000, hop_length_new) | |
f0 = torchcrepe.threshold.At(threshold)(f0, pd) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
# Convert unvoiced part to 0hz | |
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0) | |
# Interpolate f0 | |
nzindex = torch.nonzero(f0[0]).squeeze() | |
f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy() | |
time_org = 0.005 * nzindex.cpu().numpy() | |
time_frame = np.arange(mel_len) * hop_length / fs | |
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
return f0 | |
def get_f0(audio, cfg): | |
if cfg.pitch_extractor == "dio": | |
f0 = get_f0_features_using_dio(audio, cfg) | |
elif cfg.pitch_extractor == "pyin": | |
f0 = get_f0_features_using_pyin(audio, cfg) | |
elif cfg.pitch_extractor == "parselmouth": | |
f0, _ = get_f0_features_using_parselmouth(audio, cfg) | |
# elif cfg.data.f0_extractor == 'cwt': # todo | |
return f0 | |
def get_cents(f0_hz): | |
""" | |
F_{cent} = 1200 * log2 (F/440) | |
Reference: | |
APSIPA'17, Perceptual Evaluation of Singing Quality | |
""" | |
voiced_f0 = f0_hz[f0_hz != 0] | |
return 1200 * np.log2(voiced_f0 / 440) | |
def get_pitch_derivatives(f0_hz): | |
""" | |
f0_hz: (,T) | |
""" | |
f0_cent = get_cents(f0_hz) | |
return f0_cent[1:] - f0_cent[:-1] | |
def get_pitch_sub_median(f0_hz): | |
""" | |
f0_hz: (,T) | |
""" | |
f0_cent = get_cents(f0_hz) | |
return f0_cent - np.median(f0_cent) | |