Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,13 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
-
StableDiffusion3Pipeline, # For SD3 models like Stable Diffusion 3.5
|
5 |
-
ControlNetModel,
|
6 |
-
SD3Transformer2DModel, # Replacing UNet with SD3 transformer
|
7 |
-
AutoencoderKL,
|
8 |
-
UniPCMultistepScheduler,
|
9 |
-
)
|
10 |
-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
11 |
from huggingface_hub import login
|
12 |
import os
|
13 |
|
@@ -17,41 +10,21 @@ login(token=token)
|
|
17 |
|
18 |
# Model IDs for the base Stable Diffusion model and ControlNet variant
|
19 |
model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
20 |
-
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint"
|
21 |
-
|
22 |
-
# Load each model component required by the pipeline
|
23 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
|
24 |
-
transformer = SD3Transformer2DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
|
25 |
-
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
26 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)
|
27 |
-
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
|
28 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_id)
|
29 |
-
|
30 |
-
# Initialize the pipeline with all components
|
31 |
-
pipeline = StableDiffusion3Pipeline(
|
32 |
-
transformer=transformer, # Using SD3 transformer
|
33 |
-
vae=vae,
|
34 |
-
text_encoder=text_encoder,
|
35 |
-
tokenizer=tokenizer,
|
36 |
-
controlnet=controlnet,
|
37 |
-
scheduler=UniPCMultistepScheduler.from_config({"name": "UniPCMultistepScheduler"}),
|
38 |
-
feature_extractor=feature_extractor,
|
39 |
-
torch_dtype=torch.float16,
|
40 |
-
)
|
41 |
-
|
42 |
-
# Set device for pipeline
|
43 |
-
pipeline = pipeline.to("cuda") if torch.cuda.is_available() else pipeline
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
# Gradio interface function
|
49 |
def generate_image(prompt, reference_image):
|
50 |
-
#
|
51 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
52 |
|
53 |
-
# Generate image using the pipeline with ControlNet
|
54 |
-
generated_image =
|
55 |
prompt=prompt,
|
56 |
image=reference_image,
|
57 |
controlnet_conditioning_scale=1.0,
|
@@ -68,8 +41,8 @@ interface = gr.Interface(
|
|
68 |
gr.Image(type="pil", label="Reference Image (Style)")
|
69 |
],
|
70 |
outputs="image",
|
71 |
-
title="Image Generation with
|
72 |
-
description="Generates an image based on a text prompt and style reference image using Stable Diffusion 3.5 and ControlNet
|
73 |
)
|
74 |
|
75 |
# Launch the Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusion3Pipeline, ControlNetModel, UniPCMultistepScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from huggingface_hub import login
|
5 |
import os
|
6 |
|
|
|
10 |
|
11 |
# Model IDs for the base Stable Diffusion model and ControlNet variant
|
12 |
model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
13 |
+
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Adjust based on ControlNet needs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load ControlNet and Stable Diffusion models
|
16 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.bfloat16)
|
17 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
18 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
19 |
+
pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe
|
20 |
|
21 |
# Gradio interface function
|
22 |
def generate_image(prompt, reference_image):
|
23 |
+
# Prepare the reference image
|
24 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
25 |
|
26 |
+
# Generate the image using the pipeline with ControlNet
|
27 |
+
generated_image = pipe(
|
28 |
prompt=prompt,
|
29 |
image=reference_image,
|
30 |
controlnet_conditioning_scale=1.0,
|
|
|
41 |
gr.Image(type="pil", label="Reference Image (Style)")
|
42 |
],
|
43 |
outputs="image",
|
44 |
+
title="Image Generation with Stable Diffusion 3.5 and ControlNet",
|
45 |
+
description="Generates an image based on a text prompt and style reference image using Stable Diffusion 3.5 and ControlNet."
|
46 |
)
|
47 |
|
48 |
# Launch the Gradio interface
|