Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
from huggingface_hub import login
|
5 |
import os
|
6 |
|
7 |
-
# Log in to Hugging Face with token
|
8 |
token = os.getenv("HF_TOKEN")
|
9 |
login(token=token)
|
10 |
|
11 |
-
# Model IDs for
|
12 |
-
model_id = "
|
13 |
-
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint"
|
14 |
|
15 |
-
# Load ControlNet and Stable Diffusion
|
16 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.
|
17 |
-
pipe =
|
|
|
|
|
18 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
19 |
pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe
|
20 |
|
21 |
-
# Gradio interface function
|
22 |
def generate_image(prompt, reference_image):
|
23 |
-
# Prepare the reference image
|
24 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
25 |
|
26 |
-
# Generate the image
|
27 |
generated_image = pipe(
|
28 |
prompt=prompt,
|
29 |
image=reference_image,
|
@@ -41,8 +43,8 @@ interface = gr.Interface(
|
|
41 |
gr.Image(type="pil", label="Reference Image (Style)")
|
42 |
],
|
43 |
outputs="image",
|
44 |
-
title="Image Generation with Stable Diffusion
|
45 |
-
description="Generates an image based on a text prompt and
|
46 |
)
|
47 |
|
48 |
# Launch the Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
from huggingface_hub import login
|
5 |
import os
|
6 |
|
7 |
+
# Log in to Hugging Face with your token
|
8 |
token = os.getenv("HF_TOKEN")
|
9 |
login(token=token)
|
10 |
|
11 |
+
# Model IDs for Stable Diffusion 1.5 and ControlNet
|
12 |
+
model_id = "runwayml/stable-diffusion-v1-5" # Compatible with ControlNet
|
13 |
+
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint"
|
14 |
|
15 |
+
# Load the ControlNet model and Stable Diffusion pipeline
|
16 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
|
17 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
18 |
+
model_id, controlnet=controlnet, torch_dtype=torch.float16
|
19 |
+
)
|
20 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
21 |
pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe
|
22 |
|
23 |
+
# Define the Gradio interface function
|
24 |
def generate_image(prompt, reference_image):
|
25 |
+
# Prepare the reference image for ControlNet
|
26 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
27 |
|
28 |
+
# Generate the image with ControlNet conditioning
|
29 |
generated_image = pipe(
|
30 |
prompt=prompt,
|
31 |
image=reference_image,
|
|
|
43 |
gr.Image(type="pil", label="Reference Image (Style)")
|
44 |
],
|
45 |
outputs="image",
|
46 |
+
title="Image Generation with Stable Diffusion 1.5 and ControlNet",
|
47 |
+
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 1.5 with ControlNet."
|
48 |
)
|
49 |
|
50 |
# Launch the Gradio interface
|