amos1088 commited on
Commit
121ee3d
·
1 Parent(s): 9adb98e

test gradio

Browse files
Files changed (1) hide show
  1. app.py +15 -13
app.py CHANGED
@@ -1,29 +1,31 @@
1
  import gradio as gr
2
  import torch
3
- from diffusers import StableDiffusion3Pipeline, ControlNetModel, UniPCMultistepScheduler
4
  from huggingface_hub import login
5
  import os
6
 
7
- # Log in to Hugging Face with token from environment variables
8
  token = os.getenv("HF_TOKEN")
9
  login(token=token)
10
 
11
- # Model IDs for the base Stable Diffusion model and ControlNet variant
12
- model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
13
- controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Adjust based on ControlNet needs
14
 
15
- # Load ControlNet and Stable Diffusion models
16
- controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.bfloat16)
17
- pipe = StableDiffusion3Pipeline.from_pretrained(model_id, controlnet=controlnet, torch_dtype=torch.bfloat16)
 
 
18
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
19
  pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe
20
 
21
- # Gradio interface function
22
  def generate_image(prompt, reference_image):
23
- # Prepare the reference image
24
  reference_image = reference_image.convert("RGB").resize((512, 512))
25
 
26
- # Generate the image using the pipeline with ControlNet
27
  generated_image = pipe(
28
  prompt=prompt,
29
  image=reference_image,
@@ -41,8 +43,8 @@ interface = gr.Interface(
41
  gr.Image(type="pil", label="Reference Image (Style)")
42
  ],
43
  outputs="image",
44
- title="Image Generation with Stable Diffusion 3.5 and ControlNet",
45
- description="Generates an image based on a text prompt and style reference image using Stable Diffusion 3.5 and ControlNet."
46
  )
47
 
48
  # Launch the Gradio interface
 
1
  import gradio as gr
2
  import torch
3
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
4
  from huggingface_hub import login
5
  import os
6
 
7
+ # Log in to Hugging Face with your token
8
  token = os.getenv("HF_TOKEN")
9
  login(token=token)
10
 
11
+ # Model IDs for Stable Diffusion 1.5 and ControlNet
12
+ model_id = "runwayml/stable-diffusion-v1-5" # Compatible with ControlNet
13
+ controlnet_id = "lllyasviel/control_v11p_sd15_inpaint"
14
 
15
+ # Load the ControlNet model and Stable Diffusion pipeline
16
+ controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
17
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
18
+ model_id, controlnet=controlnet, torch_dtype=torch.float16
19
+ )
20
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
21
  pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe
22
 
23
+ # Define the Gradio interface function
24
  def generate_image(prompt, reference_image):
25
+ # Prepare the reference image for ControlNet
26
  reference_image = reference_image.convert("RGB").resize((512, 512))
27
 
28
+ # Generate the image with ControlNet conditioning
29
  generated_image = pipe(
30
  prompt=prompt,
31
  image=reference_image,
 
43
  gr.Image(type="pil", label="Reference Image (Style)")
44
  ],
45
  outputs="image",
46
+ title="Image Generation with Stable Diffusion 1.5 and ControlNet",
47
+ description="Generates an image based on a text prompt and a reference image using Stable Diffusion 1.5 with ControlNet."
48
  )
49
 
50
  # Launch the Gradio interface