Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,43 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
5 |
-
import os
|
6 |
from huggingface_hub import login
|
|
|
7 |
|
8 |
-
#
|
9 |
token = os.getenv("HF_TOKEN")
|
10 |
login(token=token)
|
11 |
|
12 |
-
#
|
13 |
-
model_id = "runwayml/stable-diffusion-v1-5" #
|
14 |
-
controlnet_id = "lllyasviel/
|
15 |
-
|
16 |
-
# Load ControlNet and other components
|
17 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.
|
18 |
-
|
19 |
-
|
20 |
-
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
21 |
-
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
22 |
-
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
-
|
25 |
-
# Initialize the pipeline with all required components
|
26 |
-
pipeline = StableDiffusionControlNetPipeline(
|
27 |
-
vae=vae,
|
28 |
-
text_encoder=text_encoder,
|
29 |
-
tokenizer=tokenizer,
|
30 |
-
unet=unet,
|
31 |
controlnet=controlnet,
|
32 |
-
|
33 |
-
feature_extractor=feature_extractor
|
34 |
)
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
39 |
def generate_image(prompt, reference_image):
|
|
|
40 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
|
|
|
|
41 |
generated_image = pipeline(
|
42 |
prompt=prompt,
|
43 |
image=reference_image,
|
@@ -47,6 +49,7 @@ def generate_image(prompt, reference_image):
|
|
47 |
).images[0]
|
48 |
return generated_image
|
49 |
|
|
|
50 |
# Set up Gradio interface
|
51 |
interface = gr.Interface(
|
52 |
fn=generate_image,
|
@@ -55,8 +58,8 @@ interface = gr.Interface(
|
|
55 |
gr.Image(type="pil", label="Reference Image (Style)")
|
56 |
],
|
57 |
outputs="image",
|
58 |
-
title="Image Generation with Reference-Only Style Transfer",
|
59 |
-
description="
|
60 |
)
|
61 |
|
62 |
# Launch the Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import (
|
4 |
+
StableDiffusionControlNetPipeline,
|
5 |
+
ControlNetModel,
|
6 |
+
UNet2DConditionModel,
|
7 |
+
AutoencoderKL,
|
8 |
+
UniPCMultistepScheduler,
|
9 |
+
)
|
10 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
11 |
from huggingface_hub import login
|
12 |
+
import os
|
13 |
|
14 |
+
# Log in to Hugging Face with token from environment variables
|
15 |
token = os.getenv("HF_TOKEN")
|
16 |
login(token=token)
|
17 |
|
18 |
+
# Model and ControlNet IDs
|
19 |
+
model_id = "runwayml/stable-diffusion-v1-5" # Known compatible model with ControlNet
|
20 |
+
controlnet_id = "lllyasviel/sd-controlnet-canny" # ControlNet model for edge detection
|
21 |
+
|
22 |
+
# Load ControlNet model and other components
|
23 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
|
24 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
25 |
+
model_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
controlnet=controlnet,
|
27 |
+
torch_dtype=torch.float16
|
|
|
28 |
)
|
29 |
|
30 |
+
# Optional: Set up the faster scheduler
|
31 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
32 |
|
33 |
+
# Enable CPU offloading for memory optimization
|
34 |
+
pipeline.enable_model_cpu_offload()
|
35 |
+
|
36 |
+
|
37 |
+
# Gradio interface function
|
38 |
def generate_image(prompt, reference_image):
|
39 |
+
# Resize and prepare reference image
|
40 |
reference_image = reference_image.convert("RGB").resize((512, 512))
|
41 |
+
|
42 |
+
# Generate image using the pipeline with ControlNet
|
43 |
generated_image = pipeline(
|
44 |
prompt=prompt,
|
45 |
image=reference_image,
|
|
|
49 |
).images[0]
|
50 |
return generated_image
|
51 |
|
52 |
+
|
53 |
# Set up Gradio interface
|
54 |
interface = gr.Interface(
|
55 |
fn=generate_image,
|
|
|
58 |
gr.Image(type="pil", label="Reference Image (Style)")
|
59 |
],
|
60 |
outputs="image",
|
61 |
+
title="Image Generation with ControlNet (Reference-Only Style Transfer)",
|
62 |
+
description="Generates an image based on a text prompt and style reference image using Stable Diffusion and ControlNet (reference-only mode)."
|
63 |
)
|
64 |
|
65 |
# Launch the Gradio interface
|