Spaces:
Runtime error
Runtime error
from fastapi import FastAPI,UploadFile,File | |
from pydantic import BaseModel | |
import pickle | |
import json | |
import pandas as pd | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.applications.inception_v3 import preprocess_input | |
import numpy as np | |
import os | |
import gdown | |
import lightgbm as lgb | |
from PIL import Image | |
CHUNK_SIZE = 1024 | |
app = FastAPI( | |
title='Farmer Buddy API', | |
description='API for Farmer Buddy App', | |
) | |
class crop_recommend_input(BaseModel): | |
N : int | |
P : int | |
K : int | |
temperature : float | |
humidity : float | |
ph : float | |
rainfall : float | |
class crop_yield_input(BaseModel): | |
State_Name : str | |
District_Name : str | |
Season : str | |
Crop : str | |
Area : float | |
Production : float | |
id = "1AWo5bjBSjtVRZlTcdvF1MHAXfvAgFrny" | |
output = "modelcrops.zip" | |
gdown.download(id=id, output=output, quiet=False) | |
from zipfile import ZipFile | |
with ZipFile("modelcrops.zip", 'r') as zObject: | |
zObject.extractall( | |
path="") | |
os.remove(str("modelcrops.zip")) | |
crop_recommend_ml = pickle.load(open('CropRecommendationSystem','rb')) | |
crop_yield_ml = pickle.load(open('CropYieldPrediction.pkl','rb')) | |
crop_disease_ml=load_model('CropDiseaseDetection.h5') | |
def croprecommend(input_parameters : crop_recommend_input): | |
input_data = input_parameters.json() | |
input_dictionary = json.loads(input_data) | |
N = input_dictionary['N'] | |
P = input_dictionary['P'] | |
K = input_dictionary['K'] | |
temperature = input_dictionary['temperature'] | |
humidity = input_dictionary['humidity'] | |
ph = input_dictionary['ph'] | |
rainfall = input_dictionary['rainfall'] | |
input_list = [N, P, K, temperature, humidity, ph, rainfall] | |
prediction = crop_recommend_ml.predict([input_list]) | |
print(prediction[0]) | |
return {"crop":str(prediction[0])} | |
def cropyield(input_parameters : crop_yield_input): | |
input_data = input_parameters.json() | |
input_dictionary = json.loads(input_data) | |
State_Name = input_dictionary['State_Name'] | |
District_Name = input_dictionary['District_Name'] | |
Season = input_dictionary['Season'] | |
Crop = input_dictionary['Crop'] | |
Area = input_dictionary['Area'] | |
Production = input_dictionary['Production'] | |
input_list = [State_Name, District_Name, Season, Crop, Area, Production] | |
# df = pd.DataFrame([['Chhattisgarh', 'BEMETARA', 'Rabi' ,'Potato', 3.0 ,20.0]], columns=['State_Name', 'District_Name', 'Season', 'Crop', 'Area' ,'Production']) | |
df = pd.DataFrame([input_list], columns=['State_Name', 'District_Name', 'Season', 'Crop', 'Area' ,'Production']) | |
prediction = crop_yield_ml.predict(df) | |
return {"yield":float(prediction[0])} | |
async def cropdisease(file: UploadFile = File(...)): | |
try: | |
contents = file.file.read() | |
with open(file.filename, 'wb') as f: | |
f.write(contents) | |
except Exception: | |
return {"message": "There was an error uploading the file"} | |
finally: | |
file.file.close() | |
classes = ['Potato___Early_blight', 'Tomato_healthy', 'Tomato__Target_Spot', 'Tomato__Tomato_mosaic_virus', 'Tomato_Septoria_leaf_spot', 'Tomato_Bacterial_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato_Early_blight', 'Tomato_Late_blight', 'Pepper__bell___healthy', 'Tomato__Tomato_YellowLeaf__Curl_Virus', 'Potato___healthy', 'Tomato_Leaf_Mold', 'Potato___Late_blight', 'Pepper__bell___Bacterial_spot'] | |
img=image.load_img(str(file.filename),target_size=(224,224)) | |
x=image.img_to_array(img) | |
x=x/255 | |
x=np.expand_dims(x,axis=0) | |
img_data=preprocess_input(x) | |
prediction = crop_disease_ml.predict(img_data) | |
predictions = list(prediction[0]) | |
max_num = max(predictions) | |
index = predictions.index(max_num) | |
print(classes[index]) | |
os.remove(str(file.filename)) | |
return {"disease":classes[index]} | |